[1] Y. Teraoka, H. Zhang, N. Yamazoe, Oxygen-sorptive properties of defect perovskitetype La1-xSrxCo1-yFeyO3-δ, Chem. Lett. 9(1985) 1367-1370.[2] C.Y. Tsai, A.G. Dixon, W.R. Moser, Y.H. Ma, Dense perovskite membrane reactor for partial oxidation of methane to syngas, AIChE J. 43(1997) 2741-2750.[3] X.F. Dong, H. Zhang, W.M. Lin, Preparation and characterization of a perovskite-type mixed conducting SrFe0.6Cu0.3Ti0.1O3-δ membrane for partial oxidation ofmethane to syngas, Chin. J. Chem. Eng. 16(2008) 411-415.[4] N.P. Xu, S.G. Li, W.Q. Jin, J. Shi, A novel dense mixed-conducting membrane for oxygen permeation, Chin. J. Chem. Eng. 8(2000) 218-223.[5] H.Q. Jiang, H.H. Wang, S. Werth, T. Schiestel, J. Caro, Simultaneous production of hydrogen and synthesis gas by combining water splitting with partial oxidation of methane in a hollow fiber membrane reactor, Angew. Chem. Int. Ed. 47(2008) 9341-9344.[6] S.K. Shen, R.J. Li, J.P. Zhou, C.C. Yu, Selective oxidation of light hydrocarbons using lattice oxygen instead of molecular oxygen, Chin. J. Chem. Eng. 11(2003) 649-655.[7] X.Y. Tan, N.T. Yang, K. Li, Modeling of a SrCe0.95Yb0.05O3-δ hollow fiber membrane reactor for methane coupling, Chin. J. Chem. Eng. 11(2003) 289-296.[8] W.Q. Jin, S.G. Li, P. Huang, N.P. Xu, J. Shi, Y.S. Lin, Tubular lanthanum cobaltite perovskite-type membrane reactors for partial oxidation of methane to syngas, J. Membr. Sci. 166(2000) 13-22.[9] Y.P. Lu, A.G. Dixon, W.R. Moser, Y.H. Ma, U. Balachandran, Oxidative coupling of methane using oxygen-permeable dense membrane reactors, Catal. Today 56(2000) 297-305.[10] Z.P. Shao, H. Dong, G.X. Xiong, Y. Cong, W.S. Yang, Performance of a mixedconducting ceramic membrane reactor with high oxygen permeability for methane conversion, J. Membr. Sci. 183(2001) 181-192.[11] F.T. Akin, Y.S. Lin, Selective oxidation of ethane to ethylene in a dense tubular membrane reactor, J. Membr. Sci. 209(2002) 457-467.[12] Y. Zeng, Y.S. Lin, S.L. Swartz, Perovskite-type ceramic membrane:Synthesis, oxygen permeation and membrane reactor performance for oxidative coupling of methane, J. Membr. Sci. 150(1998) 87-98.[13] Z.P. Shao, S.M. Halle, A high-performance cathode for the next generation of solidoxide fuel cells, Nature 431(2004) 170-173.[14] W. Zhou, R. Ran, Z.P. Shao, Progress in understanding and development of Ba0.5Sr0.5Co0.8Fe0.2O3-δ-based cathodes for intermediate-temperature solid-oxide fuel cells:A review, J. Power Sources 192(2009) 231-246.[15] Z.B. Yang, C.T. Yang, B. Xiong, M.F. Han, F.L. Chen, BaCo0.7Fe0.2Nb0.1O3-δ as cathode material for intermediate temperature solid oxide fuel cells, J. Power Sources 196(2011) 9164-9168.[16] T.Kida, S. Kishi,M. Yuasa, K.Shimanoe,N.Yamazoe,PlanarNASICON-based CO2 sensor using BiCuVOx/perovskite-type oxide as a solid-reference electrode, J. Electrochem. Soc. 155(2008) J117-J121.[17] S. Kishi, M. Yuasa, T. Kida, V.E. Lantto, K. Shimanoe, N. Yamazoe, A stable solidreference electrode of BiCuVOx/perovskite-oxide for potentiometric solid electrolyte CO2 sensor, J. Ceram. Soc. Jpn. 115(2007) 706-711.[18] T. Kida, D. Takauchi, K. Watanabe, M. Yuasa, K. Shimanoe, Y. Teraoka, N. Yamazoe, Oxygen permeation properties of partially A-site substituted BaFeO3-δ perovskites, J. Electrochem. Soc. 156(2009) E187-E191.[19] K. Watanabe, D. Takauchi, M. Yuasa, T. Kida, K. Shimanoe, Y. Teraoka, N. Yamazoe, Oxygen permeation properties of Co-free perovskite-type oxide membranes based on BaFe1-yZryO3-δ, J. Electrochem. Soc. 156(2009) E81-E85.[20] X.F. Zhu, Y. Cong, W.S. Yang, Oxygen permeability and structural stability of BaCe0.15Fe0.85O3-δ membranes, J. Membr. Sci. 283(2006) 38-44.[21] X.F. Zhu, H.H. Wang, W.S. Yang, Novel cobalt-free oxygen permeable membrane, Chem. Commun. 9(2004) 1130-1131.[22] F.Y. L iang, K. Par tovi, H.Q. J iang, H.X. Luo, J. Caro, B-s i te La-doped BaFe0.95-xLaxZr0.05O3-δ perovskite-type membranes for oxygen separation, J. Mater. Chem. A 1(2013) 746-751.[23] Y.J. Wang, Q. Liao, L.Y. Zhou, H.H.Wang, Oxygen permeability and structure stability of a novel cobalt-free perovskite Gd0.33Ba0.67FeO3-δ, J. Membr. Sci. 457(2014) 82-87.[24] K. Watenabe, M. Yuasa, T. Kida, Y. Teraoka, N. Yamazoe, K. Shimanoe, Highperformance oxygen-permeable membranes with an asymmetric structure using Ba0.95La0.05FeO3-δ perovskite-type oxide, Adv. Mater. 22(2010) 2367-2370.[25] T. Kida, S. Ninomiya, K. Watanabe, N. Yamazoe, K. Shimanoe, High oxygen permeation in Ba0.95La0.05FeO3-δ membranes with surface modification, ACS Appl. Mater. Interfaces 2(2010) 2849-2853.[26] H.H. Wang, C. Tablet, A. Feldhoff, J. Caro, A Cobalt-free oxygen-permeable membrane based on the perovskite-type oxide Ba0.5Sr0.5Zn0.2Fe0.8O3-δ, Adv. Mater. 17(2005) 1785-1788.[27] X.T. Liu, H.L. Zhao, J.Y. Yang, Y. Li, T. Chen, X.G. Lu, W.Z. Ding, F.S. Li, Lattice characteristics, structure stability and oxygen permeability of BaFe1-xYxO3-δ ceramic membranes, J. Membr. Sci. 383(2011) 235-240.[28] W. Chen, C.S. Chen, L. Winnubst, Ta-doped SrCo0.8Fe0.2O3-δ membranes:Phase stability and oxygen permeation in CO2 atmosphere, Solid State Ionics 196(2011) 30-33.[29] Ø.F. Lohne, J. Gurauskis, T.N. Phung,M. Einarsrud, T. Grande, H.J.M. Bouwmeester, K. Wiik, Effect of B-site substitution on the stability of La0.2Sr0.8Fe0.8B0.2O3-δ, B=Al, Ga, Cr, Ti, Ta, Nb, Solid State Ionics 225(2012) 186-189.[30] J.Z. Liu, H.W. Cheng, B. Jiang, X.G. Lu, W.Z. Ding, Effects of tantalum content on the structure stability and oxygen permeability of BaCo0.7Fe0.3-xTaxO3-δ ceramic membrane, Int. J. Hydrog. Energy 38(2013) 11090-11096.[31] H.X. Luo, B.B. Tian, Y.Y.Wei, H.H.Wang, H.Q. Jiang, J. Caro, Oxygen permeability and structural stability of a novel tantalum-doped perovskite BaCo0.7Fe0.2Ta0.1O3-δ, AIChE J. 56(2010) 604-610.[32] Q. Liao, Q. Zheng, J. Xue, Y.Y. Wei, H.H. Wang, U-shaped BaCo0.7Fe0.2Ta0.1O3-δ hollow-fiber membranes with high permeation for oxygen separation, Ind. Eng. Chem. Res. 51(2012) 15217-15223.[33] H.X. Luo, Y.Y.Wei, H.Q. Jiang,W.H. Yuan, Y.X. Lv, J. Caro, H.H.Wang, Performance of a ceramicmembrane reactorwith high oxygen flux Ta-containing perovskite for the partial oxidation of methane to syngas, J. Membr. Sci. 350(2010) 154-160.[34] V.M. Goldschmidt, Geochemische verterlungsgesetze der elemente, Norske Videnskap, Oslo, 1927.[35] R.D. Shannon, C.T. Prewitt, Effective ionic radii in oxides and fluorides, Acta Crystallogr. B25(1969) 925-946.[36] R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallogr. Sect. A 32(1976) 751-767.[37] B.M. Qian, Y.B. Chen, M.O. Tade, Z.P. Shao, BaCo0.6Fe0.3Sn0.1O3-δ perovskite as a new superior oxygen reduction electrode for intermediate-to-low temperature solid oxide fuel cells, J. Mater. Chem. A 2(2014) 15078-15086.[38] Z.G. Wang, Y. Kathiraser, S. Kawi, High performance oxygen permeable membranes with Nb-doped BaBi0.05Co0.95O3-δ perovskite oxides, J. Membr. Sci. 431(2013) 180-186. |