[1] G. Caeiro, A.F. Costa, H.S. Cerqueira, Nitrogen poisoning effect on the catalytic cracking of gas oil, Appl. Catal. A Gen. 320(2007) 8-15.[2] G.Wang, Y. Liu, X.Wang, C. Xu, J. Gao, Studies on the catalytic cracking performance of coker gas oil, Energy Fuel 23(2009) 1942-1949.[3] Q. Shi, C. Xu, S. Zhao, K.H. Chung, Y. Zhang, W. Gao, Characterization of basic nitrogen species in coker gas oils by positive-ion electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry, Energy Fuel 24(2009) 563-569.[4] G.Wang, Z.K. Li, H. Huang, X. Lan, C.M. Xu, J.S. Gao, Synergistic process for coker gas oil and heavy cycle oil conversion for maximum light production, Ind. Eng. Chem. Res. 49(2010) 11260-11268.[5] C.M. Fu, A.M. Schaffer, Effect of nitrogen compounds on cracking catalysts, Ind. Eng. Chem. Prod. Res. Dev. 24(1985) 68-75.[6] J. Scherzer, D.P. McArthur, Catalytic cracking of high-nitrogen petroleum feedstocks:effect of catalyst composition and properties, Ind. Eng. Chem. Res. 27(1988) 1571-1576.[7] A. Corma, V. Fornes, J.B. Monton, A.V. Orchilles, Catalytic cracking of alkanes on large pore, high SiO2/Al2O3 zeolites in the presence of basic nitrogen compounds. Influence of catalyst structure and composition in the activity and selectivity, Ind. Eng. Chem. Res. 26(1987) 882-886.[8] T.C. Ho, A.R. Katritzky, S.J. Cato, Effect of nitrogen compounds on cracking catalysts, Ind. Eng. Chem. Res. 31(1992) 1589-1597.[9] R. Hughes, G. Hutchings, C. Koon, B. McGhee, C. Snape, A fundamental study of the deactivation of FCC catalysts:a comparison of quinoline and phenanthrene as catalysts poisons, Stud. Surf. Sci. Catal. 88(1994) 377-384.[10] Z.k. Li, G. Wang, Q. Shi, C.m. Xu, J.s. Gao, Retardation effect of basic nitrogen compounds on hydrocarbons catalytic cracking in coker gas oil and their structural identification, Ind. Eng. Chem. Res. 50(2011) 4123-4132.[11] J.O. Barth, A. Jentys, J. Lercher, On the nature of nitrogen-containing carbonaceous deposits on coked fluid catalytic cracking catalysts, Ind. Eng. Chem. Res. 43(2004) 2368-2375.[12] Z.K. Li, J.S. Gao, G.Wang, Q. Shi, C.M. Xu, Influence of nonbasic nitrogen compounds and condensed aromatics on coker gas oil catalytic cracking and their characterization, Ind. Eng. Chem. Res. 50(2011) 9415-9424.[13] X. Zhao, A. Peters, G.Weatherbee, Nitrogen chemistry and NOX control in a fluid catalytic cracking regenerator, Ind. Eng. Chem. Res. 36(1997) 4535-4542.[14] J.O. Barth, A. Jentys, J. Lercher, Elementary reactions and intermediate species formed during the oxidative regeneration of spent fluid catalytic cracking catalysts, Ind. Eng. Chem. Res. 43(12) (2004) 3097-3104.[15] R. Bassilakis, Y. Zhao, P.R. Soloman, M.A. Serio, Sulfur and nitrogen evolution in the argonne coals:experiments and modeling, Energy Fuel 7(1993) 710-720.[16] M.A. Wojtowicz, J.R. Pels, J.A. Moulijn, Combustion of coal as a source of N2O emission, Fuel Process. Technol. 34(1993) 1-71.[17] E. Furimsky, A. Siukola, A. Turenne, Effect of temperature and O2 concentration on N-containing emissions during oxidative regeneration of hydroprocessing catalysts, Ind. Eng. Chem. Res. 35(1996) 4406-4411.[18] J.P. Hamalainen, M.J. Aho, Effect of fuel composition on the conversion of volatile solid fuel-N to N2O and NO, Fuel 74(12) (1994) 1922-1924.[19] T.P. Kobylinski, B.W. Taylor, The catalytic chemistry of nitric oxide. I. The effect of water on the reduction of nitric oxide over supported chromium and iron oxides, J. Catal. 31(450-458) (1973).[20] T.P. Kobylinski, B.W. Taylor, The catalytic chemistry of nitric oxide. II. Reduction of nitric oxide over noble metal catalysts, J. Catal. 33(1974) 376-384.[21] X. Chu, L.D. Schmidt, Intrinsic rates of NOx-carbon reactions, Ind. Eng. Chem. Res. 32(1993) 1359-1366.[22] A.W. Peters, G.D. Weatherbee, X. Zhao, Origin of NOx in the FCCU regenerator, Fuel Reformulation 5(3) (1995) 45-50.[23] A.W. Peters, M. Koranne, C. Pereira, G.D. Weatherbee, X. Zhao, J. Haley, S. Davey, B. Lakhanpal, Control and origin of NOx in the FCCU regenerator, ACS AnnualMeeting, Orlando, FL, 1996.[24] R. Mann, Fluid catalytic cracking:some recent developments in catalyst particle design and unit hardware, Catal. Today 18(1993) 509-528.[25] R.B. Miller, T.E. Johnson, C.R. Santner, A.A. Avidan, J.H. Beech, Comparison between single and two-stage FCC regenerators, Proceedings of the 1996 Annual NPRAMeeting, San Antonio, Texas, 1996.[26] S. Lin, K. Wang, G. Jia, J. Shi, J. Zhang, G. Yang, The kinetics of coke deposition and regeneration of catalysts, Acta Pet. Sin. S1(1982) 93-102.[27] G. Caeiro, J.M. Lopesa, P.Magnoux, A FT-IR study of deactivation phenomena during methylcyclohexane transformation on H-USY zeolites:nitrogen poisoning, coke formation, and acidity-activity correlations, J. Catal. 249(2007) 234-243.[28] H.S. Cerqueira, P. Ayrault, J. Datka, m-Xylene transformation over a USHY zeolite at 523 and 723 K:influence of coke deposits on activity, acidity, and porosity, J. Catal. 196(1) (2000) 149-157.[29] J. Abbot, Role of Brønsted and Lewis acid sites during cracking reactions of alkane, Appl. Catal. 47(1) (1989) 33-44.[30] J. Abbot, F. Guerzoni, Roles of Brønsted and Lewis sites during cracking of n-octane on H-mordenite, Appl. Catal. A Gen. 85(2) (1992) 173-188.[31] S.M. Babitz,M.A. Kuehne, H.H. Kung, J.T.Miller, Role of Lewis acidity in the deactivation of USY zeolites during 2-methylpentane cracking, Ind. Eng. Chem. Res. 36(8) (1997) 3027-3031.[32] A. Vimont, F. Thibault-Starzyk, J. Lavalley, Structural Lewis sites in zeolite beta-role on coking of the catalyst, Stud. Surf. Sci. Catal. 130(2000) 2963-2968.[33] K. Qian, D.C. Tomczak, E.F. Rakiewicz, Coke formation in the fluid catalytic cracking process by combined analytical techniques, Energy Fuel 11(1997) 596-601.[34] J. Huang, Application of FCC 2-stage regeneration in China, Pet. Process. Petrochem. 35(4) (2004) 34-40.[35] S. Yan, Staked two-stage regeneration technology in heavy oil FCCU, Pet. Process. Petrochem. 33(8) (2002) 7-9. |