[1] A. Ebringerová, T. Heinze, Xylan and xylan derivatives-Biopolymers with valuable properties. 1. Naturally occurring xylans:Structures, isolation, procedure and properties, Macromol. Rapid Commun. 21(2000) 542-556. [2] H.V. Scheller, P. Ulvskov, Hemicelluloses, Annu. Rev. Plant Biol. 61(2010) 263-289. [3] A. Ebringerová, Z. Hromádková, T. Heinze, Hemicellulose, Adv. Polym. Sci. 186(2005) 1-67. [4] V. Smil, Crop residues:Agriculture's Largest Harvest:Crop residues incorporate more than half of the world's agricultural phytomass, Bioscience 49(1999) 299-308. [5] T. Collins, C. Gerday, G. Feller, Xylanases, xylanase families and extremophilic xylanases, FEMS Microbiol. Rev. 29(2005) 3-23. [6] V. Juturu, J.C. Wu, Microbial xylanases:Engineering, production and industrial applications, Biotechnol. Adv. 30(2012) 1219-1227. [7] G. Hilpmann, N. Becher, F.A. Pahner, B. Kusema, P. Mäki-Arvela, R. Lange, D.Yu. Murzin, T. Salmi, Acid hydrolysis of xylan, Catal. Today 259(2016) 376-380. [8] J. Kallmeyer, R. Pockalny, R.R. Adhikari, D.C. Smith, S. D'Hondt, Global distribution of microbial abundance and biomass in subseafloor sediment, Proc. Natl. Acad. Sci. 109(2012) 16213-16216. [9] K. Horikoshi, Barophiles:Deep-sea microorganisms adapted to an extreme environment, Curr. Opin. Microbiol. 1(1998) 291-295. [10] I.P.G. Marshall, S.M. Karst, P.H. Nielsen, B.B. Jørgensen, Metagenomes from deep Baltic Sea sediments reveal how past and presentenvironmental conditions determine microbial community composition, Mar. Genomics 37(2018) 58-68. [11] B.B. Jørgensen, I.P.G. Marshall, Slow microbial life in the seabed, Annu. Rev. Mar. Sci. 8(2016) 1-22. [12] P.A. Skovgaard, H. Jørgensen, Influence of high temperature and ethanol on thermostable lignocellulolytic enzymes, J. Ind. Microbiol. Biotechnol. 40(2013) 447-456. [13] P.C.Y. Woo, S.K.P. Lau, J.L.L. Teng, H. Tse, K.Y. Yuen, Then and now:use of 16S rDNA gene sequencing for bacterial identification and discovery of novel bacteria in clinical microbiology laboratories, Clin. Microbiol. Infect. 14(2008) 908-934. [14] L.Y. Liang, D.S. Xue, Kinetics of cellulose hydrolysis by halostable cellulase from a marine Aspergillus niger at different salinities, Process Biochem. 63(2017) 163-168. [15] D.S. Xue, L.Y. Liang, D.Q. Lin, C.J. Gong, S.J. Yao, Halostable catalytic properties of exoglucanase from a marine Aspergillus niger and secondary structure change caused by high salinities, Process Biochem. 58(2017) 85-91. [16] A. Malik, M. Sakamoto, T. Ono, K. Kakii, Coaggregation between Acinetobacter johnsonii S35 and Microbacterium esteraromaticum strains isolated from sewage activated sludge, J. Biosci. Bioeng. 96(2003) 10-15. [17] Z.H. Qiu, P.J. Shi, H.Y. Luo, Y.G. Bai, T.Z. Yuan, P.L. Yang, S.C. Liu, B. Yao, A xylanase with broad pH and temperature adaptability from Streptomyces megasporus DSM 41476, and its potential application in brewing industry, Enzym. Microb. Technol. 46(2010) 506-512. [18] L.R.S. Moreira, M.C. Campos, P.H.V.M. Siqueira, L.P. Silva, C.A.O. Ricart, P.A. Martins, R.M.L. Queiroz, E.X.F. Filho, Two β-xylanases from Aspergillus terreus:Characterization and influence of phenolic compounds on xylanase activity, Fungal Genet. Biol. 60(2013) 46-52. [19] D. Driss, J.G. Berrin, N. Juge, F. Bhiri, R. Ghorbel, S.E. Chaabouni, Functional characterization of Penicillium occitanis Pol6 and Penicillium funiculosum GH11 xylanases, Protein Expr. Purif. 90(2013) 195-201. [20] P. Jampala, M. Preethi, S. Ramanujam, B.S. Harish, K.B. Uppuluri, V. Anbazhagan, Immobilization of levan-xylanase nanohybrid on an alginate bead improves xylanase stability at wide pH and temperature, Int. J. Biol. Macromol. 95(2017) 843-849. [21] X. Huang, J. Lin, X. Ye, G. Wang, Molecular characterization of a thermophilic and salt-and alkaline-tolerant xylanase from Planococcus sp. SL4, a strain isolated from the sediment of a soda lake, J. Microbiol. Biotechnol. 25(2015) 662-671. [22] W. Bai, Y. Xue, C. Zhou, Y. Ma, Cloning, expression and characterization of a novel salt-tolerant xylanase from Bacillus sp. SN5, Biotechnol. Lett. 34(2012) 2093-2099. [23] S. Ali, A. Sayed, Regulation of cellulose biosynthesis in Aspergillus terreus, World J. Microbiol. Biotechnol. 8(1992) 73-75. [24] O. Kotchoni, W. Gachomo, B. Omafuvbe, O. Shonukan, Purification and biochemical characterization of carboxymethyl cellulose (CMCase) from a catabolite repression insensitive mutant of Bacillus pumilus, Int. J. Agric. Biol. 8(2006) 286-292. [25] Y. Sato, H. Fukuda, Y. Zhou, S. Mikami, Contribution of ethanol-tolerant xylanase G2 from Aspergillus oryzae on Japanese sake brewing, J. Biosci. Bioeng. 110(2010) 679-683. [26] C.S. Goh, K.T. Lee, A visionary and conceptual macroalgae-based third-generation bioethanol (TGB) biorefinery in Sabah, Malaysia as an underlay for renewable and sustainable development, Renew. Sust. Energ. Rev. 14(2010) 842-848. [27] A.G. Marangoni, Enzyme Kinetics:A Modern Approach, John Wiley & Sons, Inc., NJ, 2003146-150(ISBN:0-471-15985-9). |