Chin.J.Chem.Eng. ›› 2016, Vol. 24 ›› Issue (3): 339-344.DOI: 10.1016/j.cjche.2015.11.003
• SEPARATION SCIENCE AND ENGINEERING • Previous Articles Next Articles
Qing Liao, Yanjie Wang, Yan Chen, Haihui Wang
Received:
2015-01-31
Revised:
2015-04-26
Online:
2016-04-08
Published:
2016-03-28
Supported by:
Supported by the National Science Fund for Distinguished Young Scholars of China(No.21225625), the National Natural Science Foundation of China(No. 21176087) and the Specialized Research Fund for the Doctoral Program of Higher Education(No.20110172110013).
Qing Liao, Yanjie Wang, Yan Chen, Haihui Wang. Novel cobalt-free tantalum-doped perovskite BaFe1-yTayO3-δ with high oxygen permeation[J]. Chin.J.Chem.Eng., 2016, 24(3): 339-344.
Qing Liao, Yanjie Wang, Yan Chen, Haihui Wang. [J]. Chinese Journal of Chemical Engineering, 2016, 24(3): 339-344.
[1] Y. Teraoka, H. Zhang, N. Yamazoe, Oxygen-sorptive properties of defect perovskitetype La1-xSrxCo1-yFeyO3-δ, Chem. Lett. 9(1985) 1367-1370. [2] C.Y. Tsai, A.G. Dixon, W.R. Moser, Y.H. Ma, Dense perovskite membrane reactor for partial oxidation of methane to syngas, AIChE J. 43(1997) 2741-2750. [3] X.F. Dong, H. Zhang, W.M. Lin, Preparation and characterization of a perovskite-type mixed conducting SrFe0.6Cu0.3Ti0.1O3-δ membrane for partial oxidation ofmethane to syngas, Chin. J. Chem. Eng. 16(2008) 411-415. [4] N.P. Xu, S.G. Li, W.Q. Jin, J. Shi, A novel dense mixed-conducting membrane for oxygen permeation, Chin. J. Chem. Eng. 8(2000) 218-223. [5] H.Q. Jiang, H.H. Wang, S. Werth, T. Schiestel, J. Caro, Simultaneous production of hydrogen and synthesis gas by combining water splitting with partial oxidation of methane in a hollow fiber membrane reactor, Angew. Chem. Int. Ed. 47(2008) 9341-9344. [6] S.K. Shen, R.J. Li, J.P. Zhou, C.C. Yu, Selective oxidation of light hydrocarbons using lattice oxygen instead of molecular oxygen, Chin. J. Chem. Eng. 11(2003) 649-655. [7] X.Y. Tan, N.T. Yang, K. Li, Modeling of a SrCe0.95Yb0.05O3-δ hollow fiber membrane reactor for methane coupling, Chin. J. Chem. Eng. 11(2003) 289-296. [8] W.Q. Jin, S.G. Li, P. Huang, N.P. Xu, J. Shi, Y.S. Lin, Tubular lanthanum cobaltite perovskite-type membrane reactors for partial oxidation of methane to syngas, J. Membr. Sci. 166(2000) 13-22. [9] Y.P. Lu, A.G. Dixon, W.R. Moser, Y.H. Ma, U. Balachandran, Oxidative coupling of methane using oxygen-permeable dense membrane reactors, Catal. Today 56(2000) 297-305. [10] Z.P. Shao, H. Dong, G.X. Xiong, Y. Cong, W.S. Yang, Performance of a mixedconducting ceramic membrane reactor with high oxygen permeability for methane conversion, J. Membr. Sci. 183(2001) 181-192. [11] F.T. Akin, Y.S. Lin, Selective oxidation of ethane to ethylene in a dense tubular membrane reactor, J. Membr. Sci. 209(2002) 457-467. [12] Y. Zeng, Y.S. Lin, S.L. Swartz, Perovskite-type ceramic membrane:Synthesis, oxygen permeation and membrane reactor performance for oxidative coupling of methane, J. Membr. Sci. 150(1998) 87-98. [13] Z.P. Shao, S.M. Halle, A high-performance cathode for the next generation of solidoxide fuel cells, Nature 431(2004) 170-173. [14] W. Zhou, R. Ran, Z.P. Shao, Progress in understanding and development of Ba0.5Sr0.5Co0.8Fe0.2O3-δ-based cathodes for intermediate-temperature solid-oxide fuel cells:A review, J. Power Sources 192(2009) 231-246. [15] Z.B. Yang, C.T. Yang, B. Xiong, M.F. Han, F.L. Chen, BaCo0.7Fe0.2Nb0.1O3-δ as cathode material for intermediate temperature solid oxide fuel cells, J. Power Sources 196(2011) 9164-9168. [16] T.Kida, S. Kishi,M. Yuasa, K.Shimanoe,N.Yamazoe,PlanarNASICON-based CO2 sensor using BiCuVOx/perovskite-type oxide as a solid-reference electrode, J. Electrochem. Soc. 155(2008) J117-J121. [17] S. Kishi, M. Yuasa, T. Kida, V.E. Lantto, K. Shimanoe, N. Yamazoe, A stable solidreference electrode of BiCuVOx/perovskite-oxide for potentiometric solid electrolyte CO2 sensor, J. Ceram. Soc. Jpn. 115(2007) 706-711. [18] T. Kida, D. Takauchi, K. Watanabe, M. Yuasa, K. Shimanoe, Y. Teraoka, N. Yamazoe, Oxygen permeation properties of partially A-site substituted BaFeO3-δ perovskites, J. Electrochem. Soc. 156(2009) E187-E191. [19] K. Watanabe, D. Takauchi, M. Yuasa, T. Kida, K. Shimanoe, Y. Teraoka, N. Yamazoe, Oxygen permeation properties of Co-free perovskite-type oxide membranes based on BaFe1-yZryO3-δ, J. Electrochem. Soc. 156(2009) E81-E85. [20] X.F. Zhu, Y. Cong, W.S. Yang, Oxygen permeability and structural stability of BaCe0.15Fe0.85O3-δ membranes, J. Membr. Sci. 283(2006) 38-44. [21] X.F. Zhu, H.H. Wang, W.S. Yang, Novel cobalt-free oxygen permeable membrane, Chem. Commun. 9(2004) 1130-1131. [22] F.Y. L iang, K. Par tovi, H.Q. J iang, H.X. Luo, J. Caro, B-s i te La-doped BaFe0.95-xLaxZr0.05O3-δ perovskite-type membranes for oxygen separation, J. Mater. Chem. A 1(2013) 746-751. [23] Y.J. Wang, Q. Liao, L.Y. Zhou, H.H.Wang, Oxygen permeability and structure stability of a novel cobalt-free perovskite Gd0.33Ba0.67FeO3-δ, J. Membr. Sci. 457(2014) 82-87. [24] K. Watenabe, M. Yuasa, T. Kida, Y. Teraoka, N. Yamazoe, K. Shimanoe, Highperformance oxygen-permeable membranes with an asymmetric structure using Ba0.95La0.05FeO3-δ perovskite-type oxide, Adv. Mater. 22(2010) 2367-2370. [25] T. Kida, S. Ninomiya, K. Watanabe, N. Yamazoe, K. Shimanoe, High oxygen permeation in Ba0.95La0.05FeO3-δ membranes with surface modification, ACS Appl. Mater. Interfaces 2(2010) 2849-2853. [26] H.H. Wang, C. Tablet, A. Feldhoff, J. Caro, A Cobalt-free oxygen-permeable membrane based on the perovskite-type oxide Ba0.5Sr0.5Zn0.2Fe0.8O3-δ, Adv. Mater. 17(2005) 1785-1788. [27] X.T. Liu, H.L. Zhao, J.Y. Yang, Y. Li, T. Chen, X.G. Lu, W.Z. Ding, F.S. Li, Lattice characteristics, structure stability and oxygen permeability of BaFe1-xYxO3-δ ceramic membranes, J. Membr. Sci. 383(2011) 235-240. [28] W. Chen, C.S. Chen, L. Winnubst, Ta-doped SrCo0.8Fe0.2O3-δ membranes:Phase stability and oxygen permeation in CO2 atmosphere, Solid State Ionics 196(2011) 30-33. [29] Ø.F. Lohne, J. Gurauskis, T.N. Phung,M. Einarsrud, T. Grande, H.J.M. Bouwmeester, K. Wiik, Effect of B-site substitution on the stability of La0.2Sr0.8Fe0.8B0.2O3-δ, B=Al, Ga, Cr, Ti, Ta, Nb, Solid State Ionics 225(2012) 186-189. [30] J.Z. Liu, H.W. Cheng, B. Jiang, X.G. Lu, W.Z. Ding, Effects of tantalum content on the structure stability and oxygen permeability of BaCo0.7Fe0.3-xTaxO3-δ ceramic membrane, Int. J. Hydrog. Energy 38(2013) 11090-11096. [31] H.X. Luo, B.B. Tian, Y.Y.Wei, H.H.Wang, H.Q. Jiang, J. Caro, Oxygen permeability and structural stability of a novel tantalum-doped perovskite BaCo0.7Fe0.2Ta0.1O3-δ, AIChE J. 56(2010) 604-610. [32] Q. Liao, Q. Zheng, J. Xue, Y.Y. Wei, H.H. Wang, U-shaped BaCo0.7Fe0.2Ta0.1O3-δ hollow-fiber membranes with high permeation for oxygen separation, Ind. Eng. Chem. Res. 51(2012) 15217-15223. [33] H.X. Luo, Y.Y.Wei, H.Q. Jiang,W.H. Yuan, Y.X. Lv, J. Caro, H.H.Wang, Performance of a ceramicmembrane reactorwith high oxygen flux Ta-containing perovskite for the partial oxidation of methane to syngas, J. Membr. Sci. 350(2010) 154-160. [34] V.M. Goldschmidt, Geochemische verterlungsgesetze der elemente, Norske Videnskap, Oslo, 1927. [35] R.D. Shannon, C.T. Prewitt, Effective ionic radii in oxides and fluorides, Acta Crystallogr. B25(1969) 925-946. [36] R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallogr. Sect. A 32(1976) 751-767. [37] B.M. Qian, Y.B. Chen, M.O. Tade, Z.P. Shao, BaCo0.6Fe0.3Sn0.1O3-δ perovskite as a new superior oxygen reduction electrode for intermediate-to-low temperature solid oxide fuel cells, J. Mater. Chem. A 2(2014) 15078-15086. [38] Z.G. Wang, Y. Kathiraser, S. Kawi, High performance oxygen permeable membranes with Nb-doped BaBi0.05Co0.95O3-δ perovskite oxides, J. Membr. Sci. 431(2013) 180-186. |
[1] | Yi Wu, Pengfei Song, Ningyan Li, Yanan Jiang, Yuan Liu. Molybdenum tailored Co0/Co2+ active pairs on a perovskite-type oxide for direct ethanol synthesis from syngas [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 279-289. |
[2] | Fanfan Shen, Lizhen Chen, Pengbao Lian, Jianlong Wang, Duanlin Cao. Solubility and metastable zone width measurement of 2,4-diaminobenzenesulfonic acid in (H2SO4 + H2O) system [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 384-391. |
[3] | Fangqi Mao, Peipei Hao, Yuquan Zhu, Xianggui Kong, Xue Duan. Layered double hydroxides: Scale production and application in soil remediation as super-stable mineralizer [J]. Chinese Journal of Chemical Engineering, 2022, 41(1): 42-48. |
[4] | Tong Zhou, Chunzhao Tu, Ya Sun, Linan Ji, Chuangxian Bian, Xiaohua Lu, Changsong Wang. Determination of the metastable zone and induction time of thiourea for cooling crystallization [J]. Chinese Journal of Chemical Engineering, 2021, 29(3): 164-168. |
[5] | Dongsheng Xue, Xuhao Zeng, Dongqiang Lin, Shanjing Yao. Thermostable ethanol tolerant xylanase from a cold-adapted marine species Acinetobacter johnsonii [J]. Chinese Journal of Chemical Engineering, 2019, 27(5): 1166-1170. |
[6] | Yukun Bai, Yuqi Wang, Weijian Yuan, Wen Sun, Guoxia Zhang, Lan Zheng, Xiaolong Han, Lifa Zhou. Catalytic performance of perovskite-like oxide doped cerium (La2-xCexCoO4±y) as catalysts for dry reforming of methane [J]. Chin.J.Chem.Eng., 2019, 27(2): 379-385. |
[7] | Hong Wang, Xin Wei, Yujun Zhang, Ronghua Ma, Zhen Yin, Jianxin Li. Electrochemical analysis and convection-enhanced mass transfer synergistic effect of MnOx/Ti membrane electrode for alcohol oxidation [J]. Chin.J.Chem.Eng., 2019, 27(1): 150-156. |
[8] | Xian Mao, Fanglu Yuan, Anqi Zhou, Wenheng Jing. Magnéli phases TinO2n-1 as novel ozonation catalysts for effective mineralization of phenol [J]. Chin.J.Chem.Eng., 2018, 26(9): 1978-1984. |
[9] | Chaofei Fei, Dan Li, Xian Mao, Yu Guo, Wenheng Jing. Synthesis of ordered mesoporous manganese titanium composite oxide catalyst for catalytic ozonation [J]. Chin.J.Chem.Eng., 2018, 26(9): 1862-1872. |
[10] | Yun Shu, Fan Zhang, Fan Wang, Hongmei Wang. Catalytic reduction of NOx by biomass-derived activated carbon supported metals [J]. Chin.J.Chem.Eng., 2018, 26(10): 2077-2083. |
[11] | Huiqi Xie, Yanying Wei, Haihui Wang. Modeling of U-shaped Ba0.5Sr0.5Co0.8Fe0.2O3-δ hollow-fiber membrane for oxygen permeation [J]. , 2017, 25(7): 892-897. |
[12] | Lizhen Chen, Liang Song, Guanchao Lan, Jianlong Wang. Solubility and metastable zone width measurement of 3, 4-bis (3-nitrofurazan-4-yl) furoxan (DNTF) in ethanol+water [J]. , 2017, 25(5): 646-651. |
[13] | Ling Zhou, ZhaoWang, Meijing Zhang, Mingxia Guo, Shijie Xu, Qiuxiang Yin. Determination of metastable zone and induction time of analgin for cooling crystallization [J]. , 2017, 25(3): 313-318. |
[14] | Teng Li, Chaohe Yang, Xiaobo Chen, Libo Yao, Wei Liang, Xuemei Ding. The correlation between nitrogen species in coke and NOx formation during regeneration [J]. Chin.J.Chem.Eng., 2016, 24(5): 606-611. |
[15] | Yanjie Wang, Qing Liao, Yan Chen, Libin Zhuang, Haihui Wang. Cobalt-free gadolinium-doped perovskite Gdx1-xFeO3-δ as high-performance materials for oxygen separation [J]. Chin.J.Chem.Eng., 2015, 23(11): 1763-1767. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||