[1] S. Lo Presti, M. Moresi, Recovery of sodium gluconate from model solutions by reverse osmosis, J. Food Eng. 44(2000) 109-117.[2] M. Moresi, B. Ceccantoni, S. Lo Presti, Modelling of ammonium fumarate recovery from model solutions by nanofiltration and reverse osmosis, J. Membr. Sci. 209(2002) 405-420.[3] I.S. Han, M. Cheryan, Nanofiltration of model acetate solutions, J. Membr. Sci. 107(1995) 107-113.[4] J.M.K. Timmer, J. Kromkamp, T. Robbertsen, Lactic acid separation from fermentation broths by reverse osmosis and nanofiltration, J. Membr. Sci. 92(1994) 185-197.[5] A. Bouchoux, H. Roux-de Balmann, F. Lutin, Nanofiltration of glucose and sodium lactate solutions:Variations of retention between single- and mixed-solute solutions, J. Membr. Sci. 258(2005) 123-132.[6] A. Escoda, P. Fievet, S. Lakard, A. Szymczyk, S. Deon, Influence of salts on the rejection of polyethyleneglycol by an NF organic membrane:Pore swelling and salting-out effects, J. Membr. Sci. 347(2010) 174-182.[7] S. Bouranene, A. Szymczyk, P. Fievet, A. Vidonne, Influence of inorganic electrolytes on the retention of polyethyleneglycol by a nanofiltration ceramic membrane, J. Membr. Sci. 290(2007) 216-221.[8] S. Bouranene, A. Szymczyk, P. Fievet, A. Vidonne, Effect of salts on the retention of polyethyleneglycol by a nanofiltration ceramic membrane, Desalination 240(2009) 94-98.[9] G. Bargeman, J.M. Vollenbroek, J. Straatsma, C.G.P.H. Schroen, R.M. Boom, Nanofiltration of multi-component feeds. Interactions between neutral and charged components and their effect on retention, J. Membr. Sci. 247(2005) 11-20.[10] E. Vellenga, G. Tragardh, Nanofiltration of combined salt and sugar solutions:coupling between retentions, Desalination 120(1998) 211-220.[11] S. Mandale, M. Jones, Interaction of electrolytes and non-electrolytes in nanofiltration, Desalination 219(2008) 262-271.[12] B. Van der Bruggen, J. Schaep, D. Wilms, C. Vandecasteels, Influence of molecular size, polarity and charge on the retention of organic molecules by nanofiltration, J. Membr. Sci. 156(1999) 29-41.[13] O.M. Cabarcos, C.J.Weinheimer, J.M. Lisy, Size selectivity by cation-π interactions:Solvation of K+ and Na+ by benzene and water, J. Chem. Phys. 110(1999) 8429-8435.[14] A.S. Mahadevi, G.N. Sastry, Cation-pi interaction:Its role and relevance in chemistry, biology, and material science, Chem. Rev. 113(2013) 2100-2138.[15] D.A. Dougherty, The cation-π interaction, Acc. Chem. Res. 46(2013) 885-893.[16] D.Q. Zhu, B.E. Herbert, M.A. Schlautman, E.R. Carraway, Characterization of cation-pi interactions in aqueous solution, using deuterium nuclear magnetic resonance spectroscopy, J. Environ. Qual. 33(2004) 276-284.[17] A.W. Mohammad, N. Hilal, H. Al-Zoubi, N.A. Darwish, Prediction of permeate fluxes and rejections of highly concentrated salts in nanofiltration membranes, J. Membr. Sci. 289(2007) 40-50.[18] W.R. Bowen, J.S. Welfoot, Modelling the performance of membrane nanofiltrationcritical assessment and model development, Chem. Eng. Sci. 57(2002) 1121-1137.[19] A.L. Zydney, Stagnant film model for concentration polarization in membrane systems, J. Membr. Sci. 130(1997) 275-281.[20] S. Deon, P. Dutournie, P. Bourseau, Modeling nanofiltration with Nernst-Planck approach and polarization layer, AIChE J 53(2007) 1952-1969.[21] G. Schock, A. Miquel, Mass transfer and pressure loss in spiral wound modules, Desalination 64(1987) 339-352.[22] S. Bandini, D. Vezzani, Nanofiltration modeling:The role of dielectric exclusion in membrane characterization, Chem. Eng. Sci. 58(2003) 3303-3326.[23] F.J. Benitez, J.L. Acero, A.I. Leal, M. Gonzalez, The use of ultrafiltration and nanofiltration membranes for the purification of cork processing wastewater, J. Hazard. Mater. 162(2009) 1438-1445.[24] Z. Ma, B.W. Su, M. Wang, C.J. Gao, D. Wang, Study on interfacial electrical phenomena of polyamide nanofiltration membrane using electrokinetic method, Chin. J. Anal. Chem. 36(2008) 1701-1710.[25] A. Szymczyk, P. Fievet, Investigation transport properties of nanofiltration membranes by means of a steric, electric and dielectric exclusion model, J. Membr. Sci. 252(2005) 77-88.[26] R.J. Srinivasa, Z. Hendrik, S.G. Narahari, Explicit solvent effect on cation-pi interactions:A first principle investigation, J. Phys. Chem. B 113(2009) 7225-7236.[27] J. Zhen, E.M. Lennon, Heng-Kwong Tsao, Yu-Jane Sheng, Shaoyi Jiang, Transport of a liquid water and methanol mixture through carbon nanotubes under a chemical potential gradient, J. Chem. Phys. 122(2005) 214702.[28] Jeetu S. Babu, Sarith P. Sathian, Combiningmolecular dynamics simulation and transition state theory to evaluate solid-liquid interfacial friction in carbon nanotube membranes, Phys. Rev. E 85(2012) 051205.[29] Yu Dan Zhu, Luzheng Zhang, Xiaohua Lu, Linghong Lu, Ximing Wu, Flow resistance analysis of nanoconfined water in silt pores bymolecular simulations:Effect of pore wall interfacial properties, Fluid Phase Equilib. 362(2014) 235-241.[30] M.J. Ariza, J. Benavente, Streaming potential along the surface of polysulfone membranes:A comparative study between two different experimental systems and determination of electrokinetic and adsorption parameters, J. Membr. Sci. 190(2001) 119-132.[31] A.A. Hussain, S.K. Nataraj, M.E.E. Abashar, I.S. Al-Mutaz, T.M. Aminabhavi, Prediction of physical properties of nanofiltration membranes using experiment and theoretical models, J. Membr. Sci. 310(2008) 321-336.[32] J. Schaep, B. Van der Bruggen, C. Vandecasteele, D. Wilms, Influence of ion size and charge in nanofiltration, Sep. Purif. Technol. 14(1998) 155-162. |