Chin.J.Chem.Eng. ›› 2016, Vol. 24 ›› Issue (3): 345-352.DOI: 10.1016/j.cjche.2015.11.004
• SEPARATION SCIENCE AND ENGINEERING • Previous Articles Next Articles
Gang Yang, YuMa, Weihong Xing
Received:
2015-04-12
Revised:
2015-08-17
Online:
2016-04-08
Published:
2016-03-28
Gang Yang, YuMa, Weihong Xing. The effect of cation-π interactions in electrolyte/organic nanofiltration systems[J]. Chin.J.Chem.Eng., 2016, 24(3): 345-352.
Gang Yang, YuMa, Weihong Xing. [J]. Chinese Journal of Chemical Engineering, 2016, 24(3): 345-352.
[1] S. Lo Presti, M. Moresi, Recovery of sodium gluconate from model solutions by reverse osmosis, J. Food Eng. 44(2000) 109-117. [2] M. Moresi, B. Ceccantoni, S. Lo Presti, Modelling of ammonium fumarate recovery from model solutions by nanofiltration and reverse osmosis, J. Membr. Sci. 209(2002) 405-420. [3] I.S. Han, M. Cheryan, Nanofiltration of model acetate solutions, J. Membr. Sci. 107(1995) 107-113. [4] J.M.K. Timmer, J. Kromkamp, T. Robbertsen, Lactic acid separation from fermentation broths by reverse osmosis and nanofiltration, J. Membr. Sci. 92(1994) 185-197. [5] A. Bouchoux, H. Roux-de Balmann, F. Lutin, Nanofiltration of glucose and sodium lactate solutions:Variations of retention between single- and mixed-solute solutions, J. Membr. Sci. 258(2005) 123-132. [6] A. Escoda, P. Fievet, S. Lakard, A. Szymczyk, S. Deon, Influence of salts on the rejection of polyethyleneglycol by an NF organic membrane:Pore swelling and salting-out effects, J. Membr. Sci. 347(2010) 174-182. [7] S. Bouranene, A. Szymczyk, P. Fievet, A. Vidonne, Influence of inorganic electrolytes on the retention of polyethyleneglycol by a nanofiltration ceramic membrane, J. Membr. Sci. 290(2007) 216-221. [8] S. Bouranene, A. Szymczyk, P. Fievet, A. Vidonne, Effect of salts on the retention of polyethyleneglycol by a nanofiltration ceramic membrane, Desalination 240(2009) 94-98. [9] G. Bargeman, J.M. Vollenbroek, J. Straatsma, C.G.P.H. Schroen, R.M. Boom, Nanofiltration of multi-component feeds. Interactions between neutral and charged components and their effect on retention, J. Membr. Sci. 247(2005) 11-20. [10] E. Vellenga, G. Tragardh, Nanofiltration of combined salt and sugar solutions:coupling between retentions, Desalination 120(1998) 211-220. [11] S. Mandale, M. Jones, Interaction of electrolytes and non-electrolytes in nanofiltration, Desalination 219(2008) 262-271. [12] B. Van der Bruggen, J. Schaep, D. Wilms, C. Vandecasteels, Influence of molecular size, polarity and charge on the retention of organic molecules by nanofiltration, J. Membr. Sci. 156(1999) 29-41. [13] O.M. Cabarcos, C.J.Weinheimer, J.M. Lisy, Size selectivity by cation-π interactions:Solvation of K+ and Na+ by benzene and water, J. Chem. Phys. 110(1999) 8429-8435. [14] A.S. Mahadevi, G.N. Sastry, Cation-pi interaction:Its role and relevance in chemistry, biology, and material science, Chem. Rev. 113(2013) 2100-2138. [15] D.A. Dougherty, The cation-π interaction, Acc. Chem. Res. 46(2013) 885-893. [16] D.Q. Zhu, B.E. Herbert, M.A. Schlautman, E.R. Carraway, Characterization of cation-pi interactions in aqueous solution, using deuterium nuclear magnetic resonance spectroscopy, J. Environ. Qual. 33(2004) 276-284. [17] A.W. Mohammad, N. Hilal, H. Al-Zoubi, N.A. Darwish, Prediction of permeate fluxes and rejections of highly concentrated salts in nanofiltration membranes, J. Membr. Sci. 289(2007) 40-50. [18] W.R. Bowen, J.S. Welfoot, Modelling the performance of membrane nanofiltrationcritical assessment and model development, Chem. Eng. Sci. 57(2002) 1121-1137. [19] A.L. Zydney, Stagnant film model for concentration polarization in membrane systems, J. Membr. Sci. 130(1997) 275-281. [20] S. Deon, P. Dutournie, P. Bourseau, Modeling nanofiltration with Nernst-Planck approach and polarization layer, AIChE J 53(2007) 1952-1969. [21] G. Schock, A. Miquel, Mass transfer and pressure loss in spiral wound modules, Desalination 64(1987) 339-352. [22] S. Bandini, D. Vezzani, Nanofiltration modeling:The role of dielectric exclusion in membrane characterization, Chem. Eng. Sci. 58(2003) 3303-3326. [23] F.J. Benitez, J.L. Acero, A.I. Leal, M. Gonzalez, The use of ultrafiltration and nanofiltration membranes for the purification of cork processing wastewater, J. Hazard. Mater. 162(2009) 1438-1445. [24] Z. Ma, B.W. Su, M. Wang, C.J. Gao, D. Wang, Study on interfacial electrical phenomena of polyamide nanofiltration membrane using electrokinetic method, Chin. J. Anal. Chem. 36(2008) 1701-1710. [25] A. Szymczyk, P. Fievet, Investigation transport properties of nanofiltration membranes by means of a steric, electric and dielectric exclusion model, J. Membr. Sci. 252(2005) 77-88. [26] R.J. Srinivasa, Z. Hendrik, S.G. Narahari, Explicit solvent effect on cation-pi interactions:A first principle investigation, J. Phys. Chem. B 113(2009) 7225-7236. [27] J. Zhen, E.M. Lennon, Heng-Kwong Tsao, Yu-Jane Sheng, Shaoyi Jiang, Transport of a liquid water and methanol mixture through carbon nanotubes under a chemical potential gradient, J. Chem. Phys. 122(2005) 214702. [28] Jeetu S. Babu, Sarith P. Sathian, Combiningmolecular dynamics simulation and transition state theory to evaluate solid-liquid interfacial friction in carbon nanotube membranes, Phys. Rev. E 85(2012) 051205. [29] Yu Dan Zhu, Luzheng Zhang, Xiaohua Lu, Linghong Lu, Ximing Wu, Flow resistance analysis of nanoconfined water in silt pores bymolecular simulations:Effect of pore wall interfacial properties, Fluid Phase Equilib. 362(2014) 235-241. [30] M.J. Ariza, J. Benavente, Streaming potential along the surface of polysulfone membranes:A comparative study between two different experimental systems and determination of electrokinetic and adsorption parameters, J. Membr. Sci. 190(2001) 119-132. [31] A.A. Hussain, S.K. Nataraj, M.E.E. Abashar, I.S. Al-Mutaz, T.M. Aminabhavi, Prediction of physical properties of nanofiltration membranes using experiment and theoretical models, J. Membr. Sci. 310(2008) 321-336. [32] J. Schaep, B. Van der Bruggen, C. Vandecasteele, D. Wilms, Influence of ion size and charge in nanofiltration, Sep. Purif. Technol. 14(1998) 155-162. |
[1] | Pan Wang, Mengdei Zhou, Zhuangxin Wei, Lu Liu, Tao Cheng, Xiaohua Tian, Jianming Pan. Preparation of bowl-shaped polydopamine surface imprinted polymer composite adsorbent for specific separation of 2′-deoxyadenosine [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 69-79. |
[2] | Yong Xu, Qingbai Chen, Yang Gao, Jianyou Wang, Huiqing Fan, Fei Zhao. Performance comparison of lithium fractionation from magnesium via continuous selective nanofiltration/electrodialysis [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 42-50. |
[3] | Haike Li, Xindong Li, Guozai Ouyang, Lang Li, Zhaohuang Zhong, Meng Cai, Wenhao Li, Wanfu Huang. Tannic acid/Fe3+ interlayer for preparation of high-permeability polyetherimide organic solvent nanofiltration membranes for organic solvent separation [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 17-29. |
[4] | Yunchang Fan, Chunyan Zhu, Sheli Zhang, Lei Zhang, Qiang Wang, Feng Wang. Efficient and selective extraction of sinomenine by deep eutectic solvents [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 109-117. |
[5] | Yongbo Liu, Zhihao Si, Cong Ren, Hanzhu Wu, Peng Zhan, Yuqing Peng, Peiyong Qin. Ultrathin polyamide nanofiltration membrane prepared by triazine-based porous organic polymer as interlayer for dye removal [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 193-201. |
[6] | Arnop Dutta, Md. Tuhinur R. Joy, Sk. Md. Ali Ahsan, Mansour K. Gatasheh, Dileep Kumar, Malik Abdul Rub, Md. Anamul Hoque, Mohammad Majibur Rahman, Nasrul Hoda, D.M. Shafiqul Islam. Physico-chemical parameters for the assembly of moxifloxacin hydrochloride and cetyltrimethylammonium chloride mixture in aqueous and alcoholic media [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 280-289. |
[7] | Fufeng Liu, Luying Jiang, Jingcheng Sang, Fuping Lu, Li Li. Molecular basis of cross-interactions between Aβ and Tau protofibrils probed by molecular simulations [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 173-180. |
[8] | Kai Zhang, Huan-Huan Wu, Hui-Qian Huo, Yan-Li Ji, Yong Zhou, Cong-Jie Gao. Recent advances in nanofiltration, reverse osmosis membranes and their applications in biomedical separation field [J]. Chinese Journal of Chemical Engineering, 2022, 49(9): 76-99. |
[9] | Shenglin Yan, Yan Zhang, Chong Peng, Xiaoyong Yang, Yuan Huang, Zhishan Bai, Xiao Xu. Oil droplet movement and micro-flow characteristics during interaction process between gas bubble and oil droplet in flotation [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 229-237. |
[10] | Yue Liang, Wenjuan Wang, Yan Sun, Xiaoyan Dong. Insights into the cross-amyloid aggregation of Aβ40 and its N-terminal truncated peptide Aβ11-40 affected by epigallocatechin gallate [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 284-293. |
[11] | Anil Kumar Nain. Study of intermolecular interactions in binary mixtures of methyl acrylate with benzene and methyl substituted benzenes at different temperatures: An experimental and theoretical approach [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 212-238. |
[12] | Yiqing Chen, Xin Huang, Suping Ding, Yaoguang Feng, Na Wang, Hongxun Hao. Application of functionalized magnetic silica nanoparticles for selective induction of three coumarin metastable polymorphs [J]. Chinese Journal of Chemical Engineering, 2022, 50(10): 155-167. |
[13] | Shujie Guo, Jiao Du, Fangzheng Yan, Zhi Wang, Jixiao Wang. Fabrication of anti-fouling polyamide nanofiltration membrane by incorporating streptomycin as a novel co-monomer [J]. Chinese Journal of Chemical Engineering, 2022, 50(10): 185-196. |
[14] | Guozhen Liu, Yanan Guo, Baochun Meng, Zhenggang Wang, Gongping Liu, Wanqin Jin. Two-dimensional MXene hollow fiber membrane for divalent ions exclusion from water [J]. Chinese Journal of Chemical Engineering, 2022, 41(1): 260-266. |
[15] | Xiaodong Liu, Zhengwei Jin, Yunhuan Jing, Panpan Fan, Zhili Qi, Weiren Bao, Jiancheng Wang, Xiaohui Yan, Peng Lv, Lianping Dong. Review of the characteristics and graded utilisation of coal gasification slag [J]. Chinese Journal of Chemical Engineering, 2021, 35(7): 92-106. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||