Chinese Journal of Chemical Engineering ›› 2021, Vol. 35 ›› Issue (7): 92-106.DOI: 10.1016/j.cjche.2021.05.007
• Review • Previous Articles Next Articles
Xiaodong Liu1, Zhengwei Jin2, Yunhuan Jing2, Panpan Fan1, Zhili Qi2, Weiren Bao1, Jiancheng Wang1, Xiaohui Yan3, Peng Lv4, Lianping Dong5
Received:
2020-11-10
Revised:
2021-05-01
Online:
2021-09-30
Published:
2021-07-28
Contact:
Panpan Fan, Weiren Bao
Supported by:
Xiaodong Liu1, Zhengwei Jin2, Yunhuan Jing2, Panpan Fan1, Zhili Qi2, Weiren Bao1, Jiancheng Wang1, Xiaohui Yan3, Peng Lv4, Lianping Dong5
通讯作者:
Panpan Fan, Weiren Bao
基金资助:
Xiaodong Liu, Zhengwei Jin, Yunhuan Jing, Panpan Fan, Zhili Qi, Weiren Bao, Jiancheng Wang, Xiaohui Yan, Peng Lv, Lianping Dong. Review of the characteristics and graded utilisation of coal gasification slag[J]. Chinese Journal of Chemical Engineering, 2021, 35(7): 92-106.
Xiaodong Liu, Zhengwei Jin, Yunhuan Jing, Panpan Fan, Zhili Qi, Weiren Bao, Jiancheng Wang, Xiaohui Yan, Peng Lv, Lianping Dong. Review of the characteristics and graded utilisation of coal gasification slag[J]. 中国化学工程学报, 2021, 35(7): 92-106.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2021.05.007
[1] National Bureau of Statistics of China, Statistical Bulletin of National Economic and Social Development of the people's Republic of China in 2019,[2020-2-28], http://www.stats.gov.cn/. [2] L.J. Qiu, China energy big data report (2020)-Coal,[2020-5-21], http://news.bjx.com.cn/special/. [3] J. Gao, G. Li, The performance of China's natural gas industry is outstanding in 2019, Energy Res. Util. 193(3) (2020) 51-54. (in Chinese) [4] Z. Qi, China energy big data report (2020)-Energy Comprehensive, Energy. Inf. Res.[2020-5-21], http://guangfu.bjx.com.cn/news/20200521/1074237.shtml. (in Chinese) [5] J.S. Qu, J.B. Zhang, Z.G. Sun, C.N. Yang, D. Shi, S.P. Peng, H.Q. Li, Research progress on comprehensive utilization of coal gasification slag, Clean Coal Technol. 26(1) (2020) 184-193. (in Chinese) [6] K. Cui, Safety Engineering Dictionary, Chemical Industry Press, Beijing, 1995,. (in Chinese) [7] B.L. Wang, Chemistry and technology progress of coal gasification, Clean Coal Technol. 20(3) (2014) 69-74. (in Chinese) [8] W. Fan, Comparison of coal water slurry and coal dust feeding methods of entrained flow gasification technology, Clean Coal Technol. 19(3) (2013) 65-67. (in Chinese) [9] X. Liu, Y.Y. Tian, Y.Y. Qiao, Progress of entrained-bed coal gasificaton technology, Chem. Ind. Eng. Prog. 29(S2) (2010) 120-124. (in Chinese) [10] K.P. Xia, H.P. Chen, X.H. Wang, S.H. Zhang, B. Gao, D.C. Liu, Present situation and development of entrained-bed coal gasification technology, Coal Convers. 28(4) (2005) 73-77. (in Chinese) [11] J.C. Zhang, Study on robust optimization and control of the performance of entrained flow coal gasification, Ph. D. Thesis, Cent. South Univ. Changsha, 2011. (in Chinese) [12] W. Yan, Application status and development ideas of coal gasification technology in China Coal Energy Group Co., Ltd, Coal Process. Compr. Util. 5(2019) 8, 42-45. (in Chinese) [13] W.J. Song, L.H. Tang, Z.B. Zhu, Y. Ninomiya, Rheological evolution and crystallization response of molten coal ash slag at high temperatures, AIChE J. 59(8) (2013) 2726-2742. [14] B.J.P. Buhre, G.J. Browning, R.P. Gupta, T.F. Wall, Measurement of the viscosity of coal-derived slag using thermomechanical analysis, Energy Fuels 19(3) (2005) 1078-1083. [15] V. Krishnamoorthy, S. Pisupati, A critical review of mineral matter related issues during gasification of coal in fixed, fluidized, and entrained flow gasifiers, Energies 8(9) (2015) 10430-10463. [16] F.J. Meng, Petrochemical coal two associations to guide the industry to resume work and production docking, http://www.cinic.org.cn/hy/zh/786450.html,2020.4. (in Chinese) [17] Y.B. Zhao, H. Wu, X.L. Cai, J.D. Zhuo, S.Y. Lai, H.G. Liu, Y.H. Jing, W. Yuan, Basic characteristics of coal gasification residual, Clean Coal Technol. 21(3) (2015) 74, 110-113. (in Chinese) [18] X.F. Shang, J.L. Ma, J. Zhang, D.Y. Xu, L.Y. Zhang, J.Q. Zhou, X.Y. Duan, X.M. Zhang, Research status and prospects of utilization technologies of slag from coal gasification, J. Environ. Eng. Technol. 7(6) (2017) 712-717. (in Chinese) [19] G.J. Li, Brief introduction of component analysis and comprehensive utilization of coal chemical gasification filter cake, Sci. Technol. Inf. (35) (2012) 398, 466. (in Chinese) [20] Z.F. Mao, Z.X. Li, Z. Liu, Discussion on the problem of slag-water separation in GE coal-water slurry gasification unit, Iterogenous fertilizer progress 4(2015) 31-33. (in Chinese) [21] Y. Wu, S.Y. Zhao, B. Li, Study on the residue features of Ningdong coal in entrained flow gasifiers, Coal Eng. 49(3) (2017) 115-118. (in Chinese) [22] S. Yang, L.J. Shi, Discussion on component analysis and comprehensive utilization of coal gasification slag, Coal Chem. Ind. 41(4) (2013) 29-31, 38. (in Chinese) [23] H. Shuai, H.F. Yin, H.D. Yuan, J.X. Chen, Phase composition evolution and viscosity-temperature characteristics of gasification slags at high temperature, Coal Convers. 38(3) (2015) 44-48. (in Chinese) [24] X.X. Gao, X.L. Guo, X. Gong, Characterization of slag from entrained-flow coal gasificaion, J. East China Univ. Sci. Technol. (Nat. Sci. Ed.) 35(5) (2009) 677-683. (in Chinese) [25] G.Z. Chi, Q.H. Guo, Y. Gong, T. Zhang, Q.F. Liang, G.S. Yu, Ash formation mechanisms during gasification in coal-water slurry gasifier, CIESC J. 63(2) (2012) 584-592. (in Chinese) [26] J. Gu, D.F. Li, Z.Z. Chen, S.Y. Wu, Y.Q. Wu, J.S. Gao, Study on physical and chemical properties of fly ash from entrained-flow gasifier, Guangdong Chem. Ind. 39(1) (2012) 119-120,129. (in Chinese) [27] Y.M. Ping, S. Huang, S.Y. Wu, Y.Q. Wu, J.S. Gao, Physicochemical properties of coal gasification slag and its catalytic effect on gasification reactivity of petroleum coke, J. East China Univ. Sci. Technol. (Nat. Sci. Ed.) 38(1) (2012) 12-16,52. (in Chinese) [28] X.D. Ge, Surface properties analysis of coal gasification coal cinder and flotation extraction research, China Coal 45(1) (2019) 107-112. (in Chinese) [29] F.H. Guo, H. Liu, Y. Guo, Y.X. Zhang, J. Li, X. Zhao, J.J. Wu, Occurrence modes of water in gasification fine slag filter cake and drying behavior analysis-A case study, J. Environ. Chem. Eng. 9(1) (2021) 104585. [30] B.F. Wen, W.C. Xia, J.M. Sokolovic, Recent advances in effective collectors for enhancing the flotation of low rank/oxidized coals, Powder Technol. 319(2017) 1-11. [31] C.C. Pan, X. Liu, W. Huo, X.L. Guo, X. Gong, Functional groups and pyrolysis characteristics of fine gasification ashes and raw coals, CIESC J. 66(4) (2015) 1449-1458. (in Chinese) [32] H.X. Li, M. Liu, J.Z. Li, T.K. Dai, A study on Huainan coal gasification cinder characteristics, Coal Geol. China 27(7) (2015) 68-70. (in Chinese) [33] P. Asokan, M. Saxena, S.R. Asolekar, Coal combustion residues-Environmental implications and recycling potentials, Resour. Conserv. Recycl. 43(3) (2005) 239-262. [34] S.Y. Wu, S. Huang, L.Y. Ji, Y.Q. Wu, J.S. Gao, Structure characteristics and gasification activity of residual carbon from entrained-flow coal gasification slag, Fuel 122(2014) 67-75. [35] S.Y. Wu, S. Huang, Y.Q. Wu, J.S. Gao, Characteristics and catalytic actions of inorganic constituents from entrained-flow coal gasification slag, J. Energy Inst. 88(1) (2015) 93-103. [36] S.Q. Xu, Gasification kinetics study of coal char and unburned carbon in slag, Ph. D. Thesis, East China Univ. Sci. Technol., Shanghai, 2011. (in Chinese) [37] M. Neville, R.J. Quann, B.S. Haynes, A.F. Sarofim, Vaporization and condensation of mineral matter during pulverized coal combustion, Symp. Int. Combust. 18(1) (1981) 1267-1274. [38] D.D. Taylor, R.C. Flagan, The influence of combustor operation on fine particles from coal combustion, Aerosol Sci. Technol. 1(1) (1981) 103-117. [39] X. Sheng, M.J. Ji, Q.Y. Han, H.X. Li, Study on the factors influencing fly ash deposition in shell coal gasification process, J. Anhui Univ. Sci. Technol. (Nat. Sci.) 29(2) (2009) 42-46. (in Chinese) [40] X. Zhao, Y.X. Zhang, Z.K. Miao, Z.K. Guo, L. Zhou, K.J. Liu, J.J. Wu, Precise separation and resource utilization of coal gasification fly ash, Clean Coal Technol. 25(1) (2019) 41-46. (in Chinese) [41] Z.H. Rao, Y.M. Zhao, C.L. Huang, C.L. Duan, J.F. He, Recent developments in drying and dewatering for low rank coals, Prog. Energy Combust. Sci. 46(2015) 1-11. [42] C.D. Si, J.J. Wu, Y. Wang, Y.X. Zhang, X.L. Shang, Drying of low-rank coals:A review of fluidized bed technologies, Dry. Technol. 33(3) (2015) 277-287. [43] C.D. Si, J.J. Wu, Y. Wang, Y.X. Zhang, G.J. Liu, Effect of acoustic field on minimum fluidization velocity and drying characteristics of lignite in a fluidized bed, Fuel Process, Technol. 135(2015) 112-118. [44] C. Si, Heat & mass transfer mechanism of microwave enhanced drying lignite in a fluidized bed, Ph. D. Thesis, China Univ. Min. Technol., Shanghai, 2016. (in Chinese) [45] Q. He, Lignite during drying process mechanism of moisture transport in the pores, Ph. D. Thesis, China Univ. Min. Technol., Beijing, 2016. (in Chinese) [46] H. Fujitsuka, R. Ashida, K. Miura, Upgrading and dewatering of low rank coals through solvent treatment at around 350℃ and low temperature oxygen reactivity of the treated coals, Fuel 114(2013) 16-20. [47] Y.X. Zhang, J.J. Wu, Y. Wang, Z.Y. Miao, C.D. Si, X.L. Shang, N. Zhang, Effect of hydrothermal dewatering on the physico-chemical structure and surface properties of Shengli lignite, Fuel 164(2016) 128-133. [48] C. Vogt, T. Wild, C. Bergins, K. Strauß, J. Hulston, A.L. Chaffee, Mechanical/thermal dewatering of lignite. Part 4:Physico-chemical properties and pore structure during an acid treatment within the MTE process, Fuel 93(2012) 433-442. [49] Y.X. Zhang, J.J. Wu, J. Ma, B.B. Wang, X.L. Shang, C.D. Si, Study on lignite dewatering by vibration mechanical thermal expression process, Fuel Process. Technol. 130(2015) 101-106. [50] G. Favas, W.R. Jackson, Hydrothermal dewatering of lower rank coals. 1. Effects of process conditions on the properties of dried product, Fuel 82(1) (2003) 53-57. [51] Q.J. Zhang, Z.Z. Cao, H.M. Li, Study on the application of plate and frame filter press in dewatering of gasified coal ash, Nitrogenous Fert. Syngas. 47(5) (2019) 13-16. (in Chinese). [52] L. Liu, X.X. Lv, C. Chen, X.D. Liu, W.Y. Guo, J.W. Chao, Analysis and optimization of dewatering for coal gasification ash water in decanter centrifuge, J. Changzhou Univ. (Nat. Sci. Ed.) 31(6) (2019) 52-59. (in Chinese) [53] X.C. Li, C. Yuan, Characteristic analysis of ash and slag in dry coal gasifier and dehydration optimization reform, Yunnan Chem. Technol. 46(5) (2019) 73-74. (in Chinese) [54] G.Z. Zhao, Design and implementation of coal gasification slag dehydration process, Chem. Eng. Des. Commun. 45(6) (2019) 12-13. (in Chinese) [55] X.L. Song, G. Guan, H. Li, T.H. Lin, G. Li, H.Q. Chen, J.Q. Zhu, B. Zhang, C.H. Yan, J. Lu, Device for dehydrating and recycling coal gasification coarse slag, CN Pat. 208574338(2019). (in Chinese) [56] GB/T 1596-2017, Fly ash used for cement and concrete, Standardization administration of the People's Republic of China, PRC National Standard 2017, http://www.sac.gov.cn/. (in Chinese) [57] JC/T 409-2016, Fly ash for silicate building products, Building materials industry standard of the people's Republic of China, PRC National Standard 2016, http://std.samr.gov.cn/. (in Chinese) [58] X.F. Shang, Y.Y. You, J.Q. Zhou, C. Zhang, L. Zhu, N. Huo, J.L. Ma. Analysis on the research status and application trend of gas slag utilization technology, in:Academic Conference of Chinese Society For Environmental Sciences'16, Haikou, China, 2016. (in Chinese) [59] R.S. Blissett, N.A. Rowson, A review of the multi-component utilisation of coal fly ash, Fuel 97(2012) 1-23. [60] M.M. Maroto-Valer, D.N. Taulbee, J.C. Hower, Characterization of differing forms of unburned carbon present in fly ash separated by density gradient centrifugation, Fuel 80(6) (2001) 795-800. [61] L. Zhang, F. Yang, Y.J. Tao, Removal of unburned carbon from fly ash using enhanced gravity separation and the comparison with froth flotation, Fuel 259(2020) 116282. [62] P. Zhao, G.Y. Gao, J.Y. Wang, Z.F. Li, M.X. Gao, J.F. Li, A device for comprehensive utilization of waste sludge from coal gasification in Texaco furnace, CN Pat. (2017), 206747245. (in Chinese) [63] S. Gao, A method for efficiently grading high-purity ash and high-purity carbon from coal gasification slag, CN Pat. (2018), 108160679. (in Chinese) [64] A.C. Chang, M.W. Thompson, R.Q. Honak, Method and system for processing gasification furnace slag products, CN Pat. (2016), 105331391. (in Chinese) [65] J.X. Lu, D.R. Su, J.P. Zhang, M.S. Peng, L.X. Deng, D.L. Zhang, Biomass gasification furnace slag screening and recycling device, CN Pat. (2014), 203940445. (in Chinese) [66] S.J. Zhu, X.L. Chen, Y.X. Qian, H.F. Lu, X. Gong, Separation performance of coal gasification fine ash by hydrocyclone, Proc. Chin. Soc. Elect. Eng. 38(13) (2018) 3873-3880, 4028. (in Chinese) [67] Y.X. Zhi, P. He, Process for purifying coal gasification slag and system for realizing the process, CN Pat. (2018), 107641537. (in Chinese) [68] S.V. Vassilev, R. Menendez, A.G. Borrego, M. Diaz-Somoano, M.R. MartinezTarazona, Phase-mineral and chemical composition of coal fly ashes as a basis for their multicomponent utilization. 3. Characterization of magnetic and char concentrates, Fuel 83(11-12) (2004) 1563-1583. [69] J. Groppo, R. Honaker, Economical recovery of fly ash-derived magnetics and evaluation for coal cleaning, Proceedings of the WOCA, Lexington, USA, 2009. [70] C.T. Yavuz, A. Prakash, J.T. Mayo, V.L. Colvin, Magnetic separations:From steel plants to biotechnology, Chem. Eng. Sci. 64(10) (2009) 2510-2521. [71] S.J. Xie, C. Zhang, W.F. Lei, W.B. Yang, S.J. Song, Study on magnetic separation of iron oxides from fly ash, Shandong Chem. Ind. 45(5) (2016) 1-2,4. (in Chinese) [72] X. Da, Selection and use of coal flotation reagents, Inn. Mong. Coal. Econ. 2(2003) 66-68. (in Chinese) [73] L. Bokányi, B. Csöke, Preparation of clean coal by flotation following ultra fine liberation, Appl. Energy 74(3-4) (2003) 349-358. [74] G. Ates ok, M.S. Çelik, A new flotation scheme for a difficult-to-float coal using pitch additive in dry grinding, Fuel 79(12) (2000) 1509-1513. [75] M.D. Xu, Y.W. Xing, X.H. Gui, Y.J. Cao, D.Y. Wang, L.W. Wang, Effect of ultrasonic pretreatment on oxidized coal flotation, Energy Fuels 31(12) (2017) 14367-14373. [76] D. Feng, C. Aldrich, Effect of preconditioning on the flotation of coal, Chem. Eng. Commun. 192(7) (2005) 972-983. [77] B.K. Sahoo, S. De, B.C. Meikap, Improvement of grinding characteristics of Indian coal by microwave pre-treatment, Fuel Process. Technol. 92(10) (2011) 1920-1928. [78] G. Özbayoǧlu, T. Depci, N. Ataman, Effect of microwave radiation on coal flotation, Energy Sources Part A:Recover. Util. Environ. Eff. 31(6) (2009) 492-499. [79] M.S. Celik, K. Seyhan, Effect of heat treatment on the flotation of Turkish lignites, Int. J. Coal Prep. Util. 16(1-2) (1995) 65-79. [80] M. Çınar, Floatability and desulfurization of a low-rank (Turkish) coal by lowtemperature heat treatment, Fuel Process. Technol. 90(10) (2009) 1300-1304. [81] W.D. Wang, D.H. Liu, Y.N. Tu, L.Z. Jin, H. Wang, Enrichment of residual carbon in entrained-flow gasification coal fine slag by ultrasonic flotation, Fuel 278(2020) 118195. [82] R. Zhang, F.Y. Guo, Y.C. Xia, J.L. Tan, Y.W. Xing, X.H. Gui, Recovering unburned carbon from gasification fly ash using saline water, Waste Manag. 98(2019) 29-36. [83] F.H. Guo, X. Zhao, Y. Guo, Y.X. Zhang, J.J. Wu, Fractal analysis and pore structure of gasification fine slag and its flotation residual carbon, Colloids Surfaces A:Physicochem. Eng. Aspects 585(2020) 124148. [84] Y. Wu, Study on the separation and utilization of gasified residues, M.A. Thesis, Xian Univ. Sci. Technol., Xi'an, 2017. (in Chinese) [85] S.Y. Zhao, Y. Wu, B. Li, X. Liang, Secondary recovery system for coal in Texaco gasification slag, CN Pat. 110052334(2020). (in Chinese) [86] H.M. Li, Z.Z. Cao, J.T. Wang, Y.X. Wan, J. Qiao, M.E. Zhang, X. Meng, Coal gasification fine ash carbon extraction device and carbon extraction process, CN Pat. (2019), 109749784. (in Chinese) [87] Y.X. Zhang, F.H. Guo, J.J. Wu, Flotation separation and dehydration system and method for coal gasification fine slag, CN Pat. (2020), 110052334. (in Chinese) [88] M. Xu, H.J. Zhang, C.Q. Liu, Y. Ru, G.S. Li, Y. Cao, A comparison of removal of unburned carbon from coal fly ash using a traditional flotation cell and a new flotation column, Physicochem. Probl. Miner. Process. 53(1) (2017) 628-643. [89] W. Yu, Z. Li, L.J. Liu, Test study on classified flotation of fine coal slime, Min. Process. Equip. 42(4) (2014) 92-96. (in Chinese) [90] K.Q. Liu, H.Y. Zhao, Z.Z. Li, Y. Guan, Z.Q. Tang, Q. Chen, Influence of coal gasification slag on cement concrete performance, J. Archit. Civil. Eng. 34(5) (2017) 194-195. (in Chinese) [91] M.Y. Hang, X.T. Lv, Y.M. Guo, S.G. Sun, Study on hydration mechanism of gasification slag fine powder cementitious system, China Concr. Cem. Prod. 2(2019) 94-97. (in Chinese) [92] A. Acosta, I. Iglesias, M. Aineto, M. Romero, J.M. Rincón, Utilisation of IGCC slag and clay steriles in soft mud bricks (by pressing) for use in building bricks manufacturing, Waste Manag. 22(8) (2002) 887-891. [93] L.P. Zhang, X.D. Wen, Y.T. Shi, A.L. Chen, H.B. Qu, C. Dhawal, Research on ma king non-burnt brickfrom indirect coal liquefaction residues, J. China Univ. Min. Technol. 44(2) (2015) 354-358. (in Chinese) [94] Z. Yu, P.C. Yu, H.F. Yin, Effect of gasification slag on the properties of sintered wall materials with iron ore tailings, Metal Mine 11(2010) 183-186. (in Chinese) [95] D.D. Zhu, S.D. Miao, B. Xue, Y.S. Jiang, C.D. Wei, Effect of coal gasification fine slag on the physicochemical properties of soil, Water Air Soil Pollut. 230(7) (2019) 1-11. [96] D.D. Zhu, B. Xue, Y.S. Jiang, C.D. Wei, Using chemical experiments and plant uptake to prove the feasibility and stability of coal gasification fine slag as silicon fertilizer, Environ. Sci. Pollut. Res. 26(6) (2019) 5925-5933. [97] T. Liu, S.K. Awasthi, Y.M. Duan, Z.Q. Zhang, M.K. Awasthi, Effect of fine coal gasification slag on improvement of bacterial diversity community during the pig manure composting, Bioresour. Technol. 304(2020) 123024. [98] J.Y. Hu, Study on the comprehensive utilization of a coal gasification slag in the north, M.A. Thesis, Southwest Univ. Sci. Technol., Mianyang, 2018. (in Chinese) [99] D.D. Zhu, Y. Cheng, B. Xue, Y.S. Jiang, C.D. Wei, Coal gasification fine slag as a low-cost adsorbent for adsorption and desorption of humic acid, Silicon 12(7) (2020) 1547-1556. [100] J. Du, G.F. Dai, S.S. Li, X.B. Wang, X.W. Sun, H.Z. Tan, Experimental study on the fundamental combustion characteristics of fine slag from gasification, Clean Coal Technol. 25(2) (2019) 83-88. (in Chinese) [101] Y.J. Chao, H.J. Wang, Feasibility study of circulating fluidized bed boiler blending burning gasification slag and coal slime, J. Chem. Fert. Ind. 42(3) (2015) 48-50. (in Chinese) [102] J.G. Gao, Y.L. Ma, R.J. Liu, Comprehensive utilization and benefit analysis of coal water slurry gasification ash, Energy Conserv. Environ. Protec. 2(2014) 72-73. (in Chinese) [103] Y.B. Dong, Recovery and recycling of carbon resource from fine dregs of water-coal slurry gasification, Nitrogenous Fert. Technol. 39(3) (2018) 25-26, 35. (in Chinese) [104] D.X. Liu, J.Y. Hu, Q.M. Feng, Y. Huang, Z.H. Xu, Study on flotation of coal gasification slag and preparation of activated carbon from refined carbon, Coal Convers. 41(5) (2018) 73-80. (in Chinese) [105] Y.Y. Yao, Preparation and performance of activated carbon/zeolite composite adsorptive materials from coal gasification, M.A. Thesis, Jilin Univ., Changchun, 2018. (in Chinese) [106] J.P. Zhang, J. Zuo, W.D. Ai, S. Liu, D.D. Zhu, J.Y. Zhang, C.D. Wei, Preparation of a new high-efficiency resin deodorant from coal gasification fine slag and its application in the removal of volatile organic compounds in polypropylene composites, J. Hazard. Mater. 384(2020) 121347. [107] S. Liu, X.T. Chen, W.D. Ai, C.D. Wei, A new method to prepare mesoporous silica from coal gasification fine slag and its application in methylene blue adsorption, J. Clean. Prod. 212(2019) 1062-1071. [108] J.Y. Hu, Y. Huang, W.Q. Wang, Q.M. Feng, Z.H. Xu, Applied of concentrate carbon from coal gasification slag by flotation on dyeing wastewater, Environ. Eng. 36(3) (2018) 59-63, 137. (in Chinese) [109] L.Y.Wen,Uselowtemperaturesinteringmethodofacticatedcoalgasificationfine slag and anovel synthesis of mesoporous SBA-15/ME-SBA-15 from gasification fine slag, M.A. Thesis, Inner Mongolia Univ., Hohhot, 2015. (in Chinese) [110] Y.Y. Gu, X.C. Qiao, A carbon silica composite prepared from water slurry coal gasification slag, Micropor. Mesopor. Mater. 276(2019) 303-307. [111] W.D. Ai, S. Liu, J.P. Zhang, S.D. Miao, C.D. Wei, Mechanical and nonisothermal crystallization properties of coal gasification fine slag glass bead-filled polypropylene composites, J. Appl. Polym. Sci. 136(30) (2019) 47803. [112] W.D. Ai, B. Xue, C.D. Wei, K.Z. Dou, S.D. Miao, Mechanical and thermal properties of coal gasification fine slag reinforced low density polyethylene composites, J. Appl. Polym. Sci. 135(17) (2018) 46203. [113] Y.Y. Gu, X.C. Qiao, Adsorption of Pb2+ from water by carbon-silica composite prepared from coal gasification fine slag, Environ. Prot. Chem. Ind. 39(1) (2019) 87-93. (in Chinese) |
[1] | Pan Zhang, Guanghui Chen, Weiwen Wang, Guodong Zhang, Huaming Wang. Analysis of the nutation and precession of the vortex core and the influence of operating parameters in a cyclone separator [J]. Chinese Journal of Chemical Engineering, 2022, 46(6): 1-10. |
[2] | Dengke Pang, Zhihong Zhang, Yongquan Zhou, Zhenhai Fu, Quan Li, Yongming Zhang, Guangguo Wang, Zhuanfang Jing. The process and mechanism for cesium and rubidium extraction with saponified 4-tert-butyl-2-(α-methylbenzyl) phenol [J]. Chinese Journal of Chemical Engineering, 2022, 46(6): 31-39. |
[3] | Jipeng Dong, Fei Wang, Guanghui Chen, Shougui Wang, Cailin Ji, Fei Gao. Fabrication of nickel oxide functionalized zeolite USY composite as a promising adsorbent for CO2 capture [J]. Chinese Journal of Chemical Engineering, 2022, 46(6): 207-213. |
[4] | Xiaomin Qiu, Yuanyuan Shen, Zhengkun Hou, Qi Wang, Zhaoyou Zhu, Yinglong Wang, Jingwei Yang, Jun Gao. Mechanism analysis of solvent selectivity and energy-saving optimization in vapor recompression-assisted extractive distillation for separation of binary azeotrope [J]. Chinese Journal of Chemical Engineering, 2022, 46(6): 271-279. |
[5] | Zongyao Zhou, Zhen Li, Lubna M. Rehman, Zhiping Lai. Conjugated microporous polymer membranes for chemical separations [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 1-14. |
[6] | Song Hu, Jinlong Li, Qihua Wang, Weisheng Yang. Design and optimization of an integrated process for the purification of propylene oxide and the separation of propylene glycol by-product [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 111-120. |
[7] | Jihe Chen, Zhongan Jiang, Bin Yang, Yapeng Wang, Fabin Zeng. Effect of inlet area on the performance of a two-stage cyclone separator [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 8-19. |
[8] | Haoqing Xu, Wenyan Feng, Menglong Sheng, Ye Yuan, Bo Wang, Jixiao Wang, Zhi Wang. Covalent organic frameworks-incorporated thin film composite membranes prepared by interfacial polymerization for efficient CO2 separation [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 152-160. |
[9] | Pengtao Guo, Miao Chang, Tongan Yan, Yuxiao Li, Dahuan Liu. A pillared-layer metal-organic framework for efficient separation of C3H8/C2H6/CH4 in natural gas [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 10-16. |
[10] | Jinlong Li, Xiaoqing Wang, Puxu Liu, Xiaohua Liu, Libo Li, Jinping Li. Shaping of metal-organic frameworks through a calcium alginate method towards ethylene/ethane separation [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 17-24. |
[11] | Puxu Liu, Yong Wang, Yang Chen, Xiaoqing Wang, Jiangfeng Yang, Libo Li, Jinping Li. Stable titanium metal-organic framework with strong binding affinity for ethane removal [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 35-41. |
[12] | Bin Gao, Zhaoqiang Zhang, Jianbo Hu, Jiyu Cui, Liyuan Chen, Xili Cui, Huabin Xing. Efficient separation of C4 olefins using tantalum pentafluor oxide anion-pillared hybrid microporous material [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 49-54. |
[13] | Xionghui Liu, Jianfeng Du, Yu Ye, Yuchuan Liu, Shun Wang, Xianyu Meng, Xiaowei Song, Zhiqiang Liang, Wenfu Yan. Boosting selective C2H2/CH4, C2H4/CH4 and CO2/CH4 adsorption performance via 1,2,3-triazole functionalized triazine-based porous organic polymers [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 64-72. |
[14] | Shuang Xu, Ru-Shuai Liu, Meng-Yao Zhang, An-Hui Lu. Designed synthesis of porous carbons for the separation of light hydrocarbons [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 130-150. |
[15] | Tongan Yan, Dahuan Liu, Qingyuan Yang, Chongli Zhong. Screening and design of COF-based mixed-matrix membrane for CH4/N2 separation [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 170-177. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||