[1] O.M. Yaghi, G.M. Li, H.L. Li, Selective binding and removal of guests in a microporous metal-organic framework, Nature 378 (1995) 703-706. [2] H. Furukawa, F. Gandara, Y.B. Zhang, J.C. Jiang, W.L. Queen, M.R. Hudson, O.M. Yaghi, Water adsorption in porous metal-organic frameworks and related materials, J. Am. Chem. Soc. 136 (11) (2014) 4369-4381. [3] W.T. Xu, O.M. Yaghi, Metal-organic frameworks for water harvesting from air, anywhere, anytime, ACS Cent. Sci. 6 (8) (2020) 1348-1354. [4] Z.L. Zheng, N. Hanikel, H. Lyu, O.M. Yaghi, Broadly tunable atmospheric water harvesting in multivariate metal-organic frameworks, J. Am. Chem. Soc. 144 (49) (2022) 22669-22675. [5] M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter, M. O’Keeffe, O.M. Yaghi, Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage, Science 295 (5554) (2002) 469-472. [6] J. Sun, W.L. Wang, Q.Y. Yue, Review on microwave-matter interaction fundamentals and efficient microwave-associated heating strategies, Materials 9 (4) (2016) 231. [7] W.L. Wang, C. Zhao, J. Sun, X.L. Wang, X.Q. Zhao, Y.P. Mao, X.N. Li, Z.L. Song, Quantitative measurement of energy utilization efficiency and study of influence factors in typical microwave heating process, Energy 87 (2015) 678-685. [8] X.Q. Zhao, W.L. Wang, H.Z. Liu, Y.P. Mao, C.Y. Ma, Z.L. Song, Temperature rise and weight loss characteristics of wheat straw under microwave heating, J. Anal. Appl. Pyrolysis 107 (2014) 59-66. [9] S.H. Jhung, J.H. Lee, J.W. Yoon, C. Serre, G. Ferey, J.S. Chang, Microwave synthesis of chromium terephthalate MIL-101 and its benzene sorption ability, Adv. Mater. 19 (1) (2007) 121-124. [10] M.J. Van Vleet, T. Weng, X. Li, J.R. Schmidt, In situ, time-resolved, and mechanistic studies of metal-organic framework nucleation and growth, Chem. Rev. 118 (7) (2018) 3681-3721. [11] T. Ahnfeldt, J. Moellmer, V. Guillerm, R. Staudt, C. Serre, N. Stock, High-throughput and time-resolved energy-dispersive X-ray diffraction (EDXRD) study of the formation of CAU-1-(OH)2: microwave and conventional heating, Chemistry 17 (23) (2011) 6462-6468. [12] E. Perez-Botella, S. Valencia, F. Rey, Zeolites in adsorption processes: state of the art and future prospects, Chem. Rev. 122 (24) (2022) 17647-17695. [13] X.J. Meng, F.S. Xiao, Green routes for synthesis of zeolites, Chem. Rev. 114 (2) (2014) 1521-1543. [14] Y.K. Hwang, J.S. Chang, S.E. Park, D.S. Kim, Y.U. Kwon, S.H. Jhung, J.S. Hwang, M.S. Park, Microwave fabrication of MFI zeolite crystals with a fibrous morphology and their applications, Angew. Chem. Int. Ed 44 (4) (2005) 556-560. [15] Z.L. Li, Y.D. Chen, J.F. Li, H. Chen, L.J. Wang, S.Q. Zheng, G.W. Lu, Systhesizing SnTe nanocrystals leading to thermoelectric performance enhancement via an ultra-fast microwave hydrothermal method, Nano Energy 28 (2016) 78-86. [16] R. Ameloot, F. Vermoortele, W. Vanhove, M.B. Roeffaers, B.F. Sels, D.E. De Vos, Interfacial synthesis of hollow metal-organic framework capsules demonstrating selective permeability, Nat. Chem. 3 (5) (2011) 382-387. [17] Y.R. Lee, M.S. Jang, H.Y. Cho, H.J. Kwon, S. Kim, W.S. Ahn, ZIF-8: a comparison of synthesis methods, Chem. Eng. J. 271 (2015) 276-280. [18] Y.L. Li, Y.J. Zhao, R. Zhang, G. Lu, PVP-assisted synthesis of monodisperse UiO-66 crystals with tunable sizes, Inorg. Chem. Commun. 82 (2017) 68-71. [19] A. Umemura, S. Diring, S. Furukawa, H. Uehara, T. Tsuruoka, S. Kitagawa, Morphology design of porous coordination polymer crystals by coordination modulation, J. Am. Chem. Soc. 133 (39) (2011) 15506-15513. [20] E. Biemmi, S. Christian, N. Stock, T. Bein, High-throughput screening of synthesis parameters in the formation of the metal-organic frameworks MOF-5 and HKUST-1, Microporous Mesoporous Mater. 117 (1-2) (2009) 111-117. [21] H.L. Guo, Y.Z. Zhu, S. Wang, S.Q. Su, L. Zhou, H.J. Zhang, Combining coordination modulation with acid-base adjustment for the control over size of metal-organic frameworks, Chem. Mater. 24 (3) (2012) 444-450. [22] J. Gascon, S. Aguado, F. Kapteijn, Manufacture of dense coatings of Cu3(BTC)2 (HKUST-1) on α-alumina, Microporous Mesoporous Mater. 113 (1-3) (2008) 132-138. [23] S. Marx, W. Kleist, A. Baiker, Synthesis, structural properties, and catalytic behavior of Cu-BTC and mixed-linker Cu-BTC-PyDC in the oxidation of benzene derivatives, J. Catal. 281 (1) (2011) 76-87. [24] Z.K. Wang, X. Guo, W. Dou, K.B. Wang, F.F. Mao, H. Wu, C.H. Sun, High supercapacitive performances of Cu-MOFs dominated by morphologies: Effects of solvents, surfactants and concentrations, J. Solid State Chem. 289 (2020) 121452. [25] T.X. Song, F. Gao, S.Y. Guo, Y.P. Zhang, S.J. Li, H.M. You, Y.K. Du, A review of the role and mechanism of surfactants in the morphology control of metal nanoparticles, Nanoscale 13 (7) (2021) 3895-3910. [26] Y.C. Pan, D. Heryadi, F. Zhou, L. Zhao, G. Lestari, H.B. Su, Z.P. Lai, Tuning the crystal morphology and size of zeolitic imidazolate framework-8 in aqueous solution by surfactants, CrystEngComm 13 (23) (2011) 6937-6940. [27] J.M. Yang, Q. Liu, Y.S. Kang, W.Y. Sun, Controlled growth and gas sorption properties of IRMOF-3 nano/microcrystals, Dalton Trans. 43 (44) (2014) 16707-16712. [28] L. Justyna, M. Kroczewska, M. Baluk, J. Sowik, P. Mazierski, A. Zaleska-Medynska, Morphology control through the synthesis of metal-organic frameworks, Adv. Colloid Interface Sci. 314 (2023) 102864. [29] F. Fathieh, M.J. Kalmutzki, E.A. Kapustin, P.J. Waller, J.J. Yang, O.M. Yaghi, Practical water production from desert air, Sci. Adv. 4 (6) (2018) eaat3198. [30] Z. Zheng, H.L. Nguyen, N. Hanikel, K.K. Li, Z. Zhou, T. Ma, O.M. Yaghi, High-yield, green and scalable methods for producing MOF-303 for water harvesting from desert air, Nat. Protoc. 18 (1) (2023) 136-156. [31] J.X. Wang, X.M. Wang, J. Li, Y. Xia, M.X. Gao, X.M. Zhang, L.H. Huang, A novel hydrophilic MOFs-303-functionalized magnetic probe for the highly efficient analysis of N-linked glycopeptides, J. Mater. Chem. B 10 (12) (2022) 2011-2018. [32] W.J. Zhang, X.H. Shi, Y.X. Zhang, W. Gu, B.Y. Li, Y.Z. Xian, Synthesis of water-soluble magnetic graphene nanocomposites for recyclable removal of heavy metal ions, J. Mater. Chem. A 1 (5) (2013) 1745-1753. [33] S.X. Wang, Y. Lv, Y.J. Yao, H.J. Yu, G. Lu, Modulated synthesis of monodisperse MOF-5 crystals with tunable sizes and shapes, Inorg. Chem. Commun. 93 (2018) 56-60. [34] T. Takai, A. Shibatani, Y. Asakuma, A. Saptoro, C. Phan, Microwave-assisted nanoparticle synthesis enhanced with addition of surfactant, Chem. Eng. Res. Des. 182 (2022) 714-718. [35] Z.Y. Zhao, H. Li, X. Gao, Microwave encounters ionic liquid: synergistic mechanism, synthesis and emerging applications, Chem. Rev. 124 (5) (2024) 2651-2698. [36] J.S. Choi, W.J. Son, J. Kim, W.S. Ahn, Metal-organic framework MOF-5 prepared by microwave heating: Factors to be considered, Microporous Mesoporous Mater. 116 (1-3) (2008) 727-731. [37] M.A. Al-Ghouti, D.A. Da’ana, Guidelines for the use and interpretation of adsorption isotherm models: a review, J. Hazard. Mater. 393 (2020) 122383. [38] M. Thommes Dr, Physical adsorption characterization of nanoporous materials, Chem. Ing. Tech. 82 (7) (2010) 1059-1073. [39] Y.C. Pan, Y.Y. Liu, G.F. Zeng, L. Zhao, Z.P. Lai, Rapid synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals in an aqueous system, Chem. Commun. 47 (7) (2011) 2071-2073. |