[1] Z.M. Tong, Z.W. Cheng, S.G. Tong, A review on the development of compressed air energy storage in China: Technical and economic challenges to commercialization, Renew. Sustain. Energy Rev. 135 (2021) 110178. [2] O.S. Odebiyi, K.H. Lasisi, O.A. Farotimi, M.O. Nnyia, B.E. Ifon, Review of vanadium and its redox flow batteries for renewable energy storage, Proc. Inst. Civ. Eng. Energy 177 (1) (2024) 3-13. [3] H.Q. Pham, H.Y. Lee, E.H. Hwang, Y.G. Kwon, S.W. Song, Non-flammable organic liquid electrolyte for high-safety and high-energy density Li-ion batteries, J. Power Sources 404 (2018) 13-19. [4] R. Pichugov, P. Loktionov, D. Verakso, A. Pustovalova, D. Chikin, A. Antipov, Sensitivity of capacity fade in vanadium redox flow battery to electrolyte impurity content, ChemPlusChem 89 (12) (2024) e202400372. [5] Y.H. Wang, Y.F. Wang, Y.T. Li, C. Wu, X.L. Han, N.N. Zhao, Z.K. Zhang, L. Dai, L. Wang, Z.X. He, A review on vanadium extraction techniques from major vanadium-containing resources, Rare Met. 43 (9) (2024) 4115-4131. [6] Y. Guo, Y.D. Yang, W.J. Li, J.W. Wen, B. Liu, Novel process to prepare a vanadium electrolyte from a calcification roasting-acid leaching solution of vanadium slag, Ind. Eng. Chem. Res. 62 (40) (2023) 16411-16418. [7] S.Y. Liu, L.J. Wang, J. Chen, L. Ye, J.Y. Du, Research progress of vanadium extraction processes from vanadium slag: A review, Sep. Purif. Technol. 342 (2024) 127035. [8] L. Jiang, W.Y. He, G.C. Du, H. Zheng, Y. Peng, Implication of hydrolysis on vanadium precipitation with acidic ammonium salt from high concentration of alkaline vanadium solution, Korean J. Chem. Eng. 40 (10) (2023) 2513-2519. [9] S.J. Zou, B.H. Ding, Y.F. Chen, H.T. Fan, Nanocomposites of graphene and zirconia for adsorption of organic-arsenic drugs: Performances comparison and analysis of adsorption behavior, Environ. Res. 195 (2021) 110752. [10] M. Li, B.G. Zhang, S.Q. Zou, Q.S. Liu, M. Yang, Highly selective adsorption of vanadium (V) by nano-hydrous zirconium oxide-modified anion exchange resin, J. Hazard. Mater. 384 (2020) 121386. [11] S. Salehi, S. Alijani, M. Anbia, Enhanced adsorption properties of zirconium modified chitosan-zeolite nanocomposites for vanadium ion removal, Int. J. Biol. Macromol. 164 (2020) 105-120. [12] F.J. Sun, M. Liu, B. Yuan, J. He, P. Wu, C.J. Liu, W. Jiang, Separation of vanadium and chromium by selective adsorption by titanium-based microspheres, Chem. Eng. J. 450 (2022) 138039. [13] P.H. Chen, T. Wang, Y.W. Xiao, E.Z. Tian, W.L. Wang, Y.L. Zhao, L. Tian, H.L. Jiang, X.B. Luo, Efficient fluoride removal from aqueous solution by synthetic FeMgLa tri-metal nanocomposite and the analysis of its adsorption mechanism, J. Alloys Compd. 738 (2018) 118-129. [14] Q.Y. Hu, H. Paudyal, J.M. Zhao, F. Huo, K. Inoue, H.Z. Liu, Adsorptive recovery of vanadium(V) from chromium(VI)-containing effluent by Zr(IV)-loaded orange juice residue, Chem. Eng. J. 248 (2014) 79-88. [15] B.Y. Wu, C.P. Liu, C.Y. Fu, P. Wu, C.J. Liu, W. Jiang, Selective separation of Cr(VI) and V(V) from solution by simple pH controlled two-step adsorption/desorption process with ZrO2, Chem. Eng. J. 373 (2019) 1030-1041. [16] B. Yuan, P. Wu, C.J. Liu, J. He, W. Jiang, Separation of high concentration V(V) and Cr(VI) by amorphous hydrous zirconium oxide with high adsorption capacity and selectivity, Sep. Purif. Technol. 354 (2025) 128562. [17] K.P. He, P.T. Chen, B. Yuan, F.J. Sun, J. He, P. Wu, C.J. Liu, W. Jiang, Removing trace chromium from high concentration vanadium solution by photoreduction deposition with Ti-Zr solid solution, Sep. Purif. Technol. 290 (2022) 120855. [18] R. Garg, R. Garg, M. Sillanpaa, Alimuddin, M.A. Khan, N.M. Mubarak, Y.H. Tan, Rapid adsorptive removal of chromium from wastewater using walnut-derived biosorbents, Sci. Rep. 13 (1) (2023) 6859. [19] Q. Chen, W.H. Mo, G.D. Yang, S.X. Zhong, H.J. Lin, J.R. Chen, S. Bai, Significantly enhanced photocatalytic CO2 reduction by surface amorphization of cocatalysts, Small 17 (45) (2021) 2102105. [20] E.M. Kock, M. Kogler, B. Klotzer, M.F. Noisternig, S. Penner, Structural and electrochemical properties of physisorbed and chemisorbed water layers on the ceramic oxides Y2O3, YSZ, and ZrO2, ACS Appl. Mater. Interfaces 8 (25) (2016) 16428-16443. [21] M. Takeuchi, G. Martra, S. Coluccia, M. Anpo, Investigations of the structure of H2O clusters adsorbed on TiO2 surfaces by near-infrared absorption spectroscopy, J. Phys. Chem. B 109 (15) (2005) 7387-7391. [22] V.G. Deshmane, Y.G. Adewuyi, Mesoporous nanocrystalline sulfated zirconia synthesis and its application for FFA esterification in oils, Appl. Catal. A Gen. 462 (2013) 196-206. [23] A. Singhania, S.M. Gupta, Nanocrystalline ZrO2 and Pt-doped ZrO2 catalysts for low-temperature CO oxidation, Beilstein J. Nanotechnol. 8 (2017) 264-271. [24] S. Sinha, S. Badrinarayanan, A.P.B. Sinha, An XPS study of hydrogen implanted zirconium, J. Less Common Met. 134 (2) (1987) 229-236. [25] W.L. Zhu, A. Fujiwara, N. Nishiike, S. Nakashima, H. Gu, E. Marin, N. Sugano, G. Pezzotti, Mechanisms induced by transition metal contaminants and their effect on the hydrothermal stability of zirconia-containing bioceramics: An XPS study, Phys. Chem. Chem. Phys. 20 (45) (2018) 28929-28940. [26] T. Wallstedt, L. Bjorkvald, J.P. Gustafsson, Increasing concentrations of arsenic and vanadium in (southern) Swedish streams, Appl. Geochem. 25 (8) (2010) 1162-1175. [27] J. Wen, T. Jiang, Y.J. Liu, X.X. Xue, Extraction behavior of vanadium and chromium by calcification roasting-acid leaching from high chromium vanadium slag: Optimization using response surface methodology, Miner. Process. Extr. Metall. Rev. 40 (1) (2019) 56-66. [28] J. Wang, Y.B. Zhu, Z.D. Jiang, X.P. Du, M.J. Zheng, L.J. Li, H. Ni, Y.P. Wang, Z.P. Li, Q.B. Li, Characteristics and mechanism of Ni2+ and Cd2+ adsorption by recovered perlite from agar extraction residue, Chin. J. Chem. Eng. 72 (2024) 141-152. [29] Z.W. Ying, Y. Song, K.Y. Zhu, G.X. Wu, Y. Ju, Q.F. Wei, X.L. Ren, A cleaner and sustainable method to recover vanadium and chromium from the leaching solution based on solvent extraction, J. Environ. Chem. Eng. 10 (3) (2022) 107384. [30] C. He, Z.Q. Yang, J. Ding, Y.C. Chen, X.W. Tong, Y. Li, Effective removal of Cr(VI) from aqueous solution by 3-aminopropyltriethoxysilane-functionalized graphene oxide, Colloids Surf. A 520 (2017) 448-458. [31] H. Berndt, A. Martin, A. Bruckner, E. Schreier, D. Muller, H. Kosslick, G.U. Wolf, B. Lucke, Structure and catalytic properties of VOx/MCM materials for the partial oxidation of methane to formaldehyde, J. Catal. 191 (2) (2000) 384-400. [32] B.F. Gao, Y. Ma, Y.A. Cao, J.N. Yao, Effect of annealing temperature on the surface structure and properties of chromium doped titania, Acta Chim. Sin. 64 (13) (2006) 1329-1333. [33] R.S. Pavlov, V.B. Marza, J.B. Carda, Electronic absorption spectroscopy and colour of chromium-doped solids, J. Mater. Chem. 12 (9) (2002) 2825-2832. [34] X.Q. Li, B. Li, S.Q. Li, Y.P. Dong, D.D. Gao, Z.R. Niu, W. Li, H.T. Feng, In-situ synthesis of CrOx(OH)3-2x for synchronous adsorption of Si and V from high concentration Cr(VI) solution and converted to excellent Cr2O3 pigment, Sep. Purif. Technol. 309 (2023) 122973. [35] V.I. Nefedov, M.N. Firsov, I.S. Shaplygin, Electronic structures of MRhO2, MRh2O4, RhMO4 and Rh2MO6 on the basis of X-ray spectroscopy and ESCA data, J. Electron Spectrosc. Relat. Phenom. 26 (1) (1982) 65-78. [36] M.O. Sebabi, N. Mabuba, K. Pillay, S.P. Malinga, Hyperbranched-polyethylenimine-functionalized coal fly ash as an adsorbent for the removal of hexavalent chromium and reuse as a dye photocatalyst, ACS Omega 9 (8) (2024) 8954-8972. [37] J.R. Li, J.J. Su, Y. Wang, Z.L. Yang, Q. Yang, Efficient removal of hexavalent chromium by a novel magnetic zirconium-iron composite oxide (MZIO) from aqueous solution: Kinetic, isotherm, and mechanism, Colloids Surf. A Physicochem. Eng. Aspects 641 (2022) 128440. [38] B. Yuan, Z.L. Yang, P. Wu, X.B. Yin, C.J. Liu, F.J. Sun, J. He, W. Jiang, Efficient treatment of chromium-containing wastewater based on auxiliary intelligent model with rapid-response adsorbents, Sep. Purif. Technol. 363 (2025) 132037. |