Chinese Journal of Chemical Engineering ›› 2025, Vol. 79 ›› Issue (3): 81-90.DOI: 10.1016/j.cjche.2024.10.033
Previous Articles Next Articles
Xinran Zhu1,2, Xuesong Sun1,2, Yanjun Li1,2, Yuexin Han1,2
Received:
2024-08-01
Revised:
2024-10-27
Accepted:
2024-10-28
Online:
2025-01-09
Published:
2025-03-28
Supported by:
Xinran Zhu1,2, Xuesong Sun1,2, Yanjun Li1,2, Yuexin Han1,2
通讯作者:
Xuesong Sun,E-mail:2210464@stu.neu.edu.cn
基金资助:
Xinran Zhu, Xuesong Sun, Yanjun Li, Yuexin Han. Sustainable iron recovery from iron ore tailings using hydrogen-based reduction roasting and magnetic separation: A pilot-scale study[J]. Chinese Journal of Chemical Engineering, 2025, 79(3): 81-90.
Xinran Zhu, Xuesong Sun, Yanjun Li, Yuexin Han. Sustainable iron recovery from iron ore tailings using hydrogen-based reduction roasting and magnetic separation: A pilot-scale study[J]. 中国化学工程学报, 2025, 79(3): 81-90.
[1] H.W. Guo, J.L. Bai, J.L. Zhang, H.G. Li, Mechanism of strength improvement of magnetite pellet by adding boron-bearing iron concentrate, J. Iron Steel Res. Int. 21 (1) (2014) 9-15. [2] J.W. Yu, Y.X. Han, Y.J. Li, P. Gao, Recent advances in magnetization roasting of refractory iron ores: A technological review in the past decade, Miner. Process. Extr. Metall. Rev. 41 (5) (2020) 349-359. [3] H.Y. Sun, M.J. Zhang, Z. Zou, D. Yan, Fluidized magnetization roasting utilization of refractory siderite-containing iron ore with low gas reduction potential, Adv. Powder Technol. 34 (5) (2023) 103994. [4] S.C. Wu, T.C. Sun, J. Kou, E.X. Gao, Green and efficient separation of iron and phosphorus from high-phosphorus oolitic iron ore by reduction roasting without a dephosphorization agent, Process. Saf. Environ. Prot. 176 (2023) 304-315. [5] The General Administration of Customs of the People’s Republic of China, China’s Major Imports by Quantity and Value, 2023, in Chinese. [6] S.K. Cheng, Y.X. Han, Z.D. Tang, W.B. Li, Producing magnetite concentrate from iron tailings via suspension magnetization roasting: A pilot-scale study, Sep. Sci. Technol. 58 (7) (2023) 1372-1382. [7] R.D. Wu, Y. Shen, J.H. Liu, L.N. Cheng, G.T. Zhang, Y.Y. Zhang, Effect of iron tailings and slag powders on workability and mechanical properties of concrete, Front. Mater. 8 (2021) 723119. [8] S. Zhang, X. Xue, X. Liu, P. Duan, H. Yang, T. Jiang, D. Wang, R. Liu, Current situation and comprehensive utilization of iron ore tailing resources, J. Min. Sci. 42 (4) (2006) 403-408. [9] J.H. Deng, X.N. Ning, G.Q. Qiu, D.Y. Zhang, J.Y. Chen, J.Y. Li, Y.Z. Liang, Y. Wang, Optimizing iron separation and recycling from iron tailings: A synergistic approach combining reduction roasting and alkaline leaching, J. Environ. Chem. Eng. 11 (3) (2023) 110266. [10] X.X. Ma, J.H. Sun, F.S. Zhang, J. Yuan, Z.L. Meng, Experimental studies and analysis on axial compressive properties of full iron tailings concrete columns, Case Stud. Constr. Mater. 18 (2023) e01881. [11] J.X. Zhang, Z.J. Chang, F.S. Niu, Y.Y. Chen, J.H. Wu, H.M. Zhang, Simulation and validation of discrete element parameter calibration for fine-grained iron tailings, Minerals 13 (1) (2022) 58. [12] C. Li, H.H. Sun, J. Bai, L.T. Li, Innovative methodology for comprehensive utilization of iron ore tailings: Part 1. The recovery of iron from iron ore tailings using magnetic separation after magnetizing roasting, J. Hazard. Mater. 174 (1-3) (2010) 71-77. [13] Y.S. Sun, X.L. Zhang, Y.X. Han, Y.J. Li, A new approach for recovering iron from iron ore tailings using suspension magnetization roasting: A pilot-scale study, Powder Technol. 361 (2020) 571-580. [14] O. Carmignano, S. Vieira, A.P. Teixeira, F. Lameiras, P.R. Brandao, R. Lago, Iron ore tailings: Characterization and applications, J. Braz. Chem. Soc. (2021) 1895-1911. [15] A.F.D.V. Rodrigues, H. Delboni Jr, J. Zhou, K.P. Galvin, Gravity separation of fine itabirite iron ore using the Reflux Classifier-Part II-Establishing the underpinning partition surface, Miner. Eng. 210 (2024) 108641. [16] A.F.D.V. Rodrigues, H. Delboni, K. Silva, J. Zhou, K.P. Galvin, L.O. Filippov, Transforming iron ore processing-Simplifying the comminution and replacing reverse flotation with magnetic and gravity separation, Miner. Eng. 199 (2023) 108112. [17] A.V. Kurkov, A.V. Egorov, S.N. Shcherbakova, Integrated processing technology for hematite-martite ore, J. Min. Sci. 51 (1) (2015) 144-149. [18] S. Pandiri, M.V. Raju, M. Harikrishna, R. Bonda, R. Saha, U. Attel, Enhanced iron recovery from ultrafine iron ore tailing through combined gravitational and magnetic separation process, Trans. Indian Inst. Met. 75 (9) (2022) 2435-2442. [19] A.A. Sirkeci, A. Gul, G. Bulut, F. Arslan, G. Onal, A.E. Yuce, Recovery of Co, Ni, and Cu from the tailings of divrigi iron ore concentrator, Miner. Process. Extr. Metall. Rev. 27 (2) (2006) 131-141. [20] F. Nakhaei, M. Irannajad, Sulphur removal of iron ore tailings by flotation, J. Dispers. Sci. Technol. 38 (12) (2017) 1755-1763. [21] G.M. Rocha, N.R. de Souza Machado, C.A. Pereira, Effect of ground corn and cassava flour on the flotation of iron ore tailings, J. Mater. Res. Technol. 8 (1) (2019) 1510-1514. [22] B. Arvidson, M. Klemetti, T. Knuutinen, M. Kuusisto, Y.T. Man, C. Hughes-Narborough, Flotation of pyrrhotite to produce magnetite concentrates with a sulphur level below 0.05% w/w, Miner. Eng. 50 (2013) 4-12. [23] S.M. Zhang, T. Zhou, C.R. Li, M. Zhang, H.R. Yang, Research progress and prospect of fluidized bed metallic ore roasting technology: A review, Fuel 378 (2024) 132717. [24] Y.J. Li, Q. Zhang, S. Yuan, H. Yin, High-efficiency extraction of iron from early iron tailings via the suspension roasting-magnetic separation, Powder Technol. 379 (2021) 466-477. [25] H. Qin, X.Y. Guo, D.W. Yu, Q.H. Tian, D. Li, L. Zhang, Pyrite as an efficient reductant for magnetization roasting and its efficacy in iron recovery from iron-bearing tailing, Sep. Purif. Technol. 305 (2023) 122511. [26] X.L. Zhang, Y.X. Han, Y.S. Sun, Y. Lv, Y.J. Li, Z.D. Tang, An novel method for iron recovery from iron ore tailings with pre-concentration followed by magnetization roasting and magnetic separation, Miner. Process. Extr. Metall. Rev. 41 (2) (2020) 117-129. [27] J.F. He, C.G. Liu, P. Hong, Y.K. Yao, Z.F. Luo, L.L. Zhao, Mineralogical characterization of the typical coarse iron ore particles and the potential to discharge waste gangue using a dry density-based gravity separation, Powder Technol. 342 (2019) 348-355. [28] B. Luo, T.J. Peng, H.J. Sun, Recovery of γ-Fe2O3 from copper ore tailings by magnetization roasting and magnetic separation, Open Chem. 19 (1) (2021) 128-137. [29] L.H. Gao, Z.G. Liu, Y.Z. Pan, Y. Ge, C. Feng, M.S. Chu, J. Tang, Separation and recovery of iron and nickel from low-grade laterite nickel ore using reduction roasting at rotary kiln followed by magnetic separation technique, Min. Metall. Explor. 36 (2) (2019) 375-384. [30] H.L. Li, B. Xie, X.L. Zhu, Q. Li, J.P. Yang, Erosion behaviour of rotary kiln refractory and its effects on ringing during steel-rolling oily sludge incineration, Waste Manag. 164 (2023) 162-170. [31] L.Q. Luo, H. Huang, Y.F. Yu, Characterization and technology of fast reducing roasting for fine iron materials, J. Cent. South Univ. 19 (8) (2012) 2272-2278. [32] J.X. You, S.H. Zhang, S.C. Wu, L. Yan, W.S. Huang, M.J. Rao, Preparation of reduced iron powder from high-phosphorus iron ore: A pilot-scale rotary-kiln investigation, Miner. Process. Extr. Metall. Rev. 45 (6) (2024) 644-653. [33] A.J. Yan, T.Y. Chai, W. Yu, Z. Xu, Multi-objective evaluation-based hybrid intelligent control optimization for shaft furnace roasting process, Contr. Eng. Pract. 20 (9) (2012) 857-868. [34] T.Y. Chai, J.L. Ding, F.H. Wu, Hybrid intelligent control for optimal operation of shaft furnace roasting process, Contr. Eng. Pract. 19 (3) (2011) 264-275. [35] W. Li, N. Wang, G.Q. Fu, M.S. Chu, M.Y. Zhu, Influence of roasting characteristics on gas-based direct reduction behavior of Hongge vanadium titanomagnetite pellet with simulated shaft furnace gases, Powder Technol. 310 (2017) 343-350. [36] K.V. Murthy, R. Ravi, K.K. Bhat, K.S.M.S. Raghavarao, Studies on roasting of wheat using fluidized bed roaster, J. Food Eng. 89 (3) (2008) 336-342. [37] D.W. Yu, T.A. Utigard, M. Barati, Fluidized bed selective oxidation-sulfation roasting of nickel sulfide concentrate: Part I. Oxidation roasting, Metall. Mater. Trans. B 45 (2) (2014) 653-661. [38] X.R. Zhu, Y.X. Han, P.F. Liu, Y.J. Li, Reduction mechanism of the porous hematite in limonite ore magnetization roasting, Miner. Process. Extr. Metall. Rev. 45(2) (2024) 85-90. [39] Z. Bai, Y.X. Han, J.P. Jin, Y.S. Sun, Q. Zhang, Decarbonization kinetics for fluidized roasting of vanadium-bearing carbonaceous shale, J. Therm. Anal. Calorim. 148 (14) (2023) 6873-6885. [40] Y.L. Feng, Z.L. Cai, H.R. Li, Z.W. Du, X.W. Liu, Fluidized roasting reduction kinetics of low-grade pyrolusite coupling with pretreatment of stone coal, Int. J. Miner. Metall. Mater. 20 (3) (2013) 221-227. [41] Z. Zou, J.Y. Zhu, D. Yan, Y.T. Wang, Q.S. Zhu, H.Z. Li, CFD simulation of fluidized magnetic roasting coupled with random nucleation model, Chem. Eng. Sci. 229 (2021) 116148. [42] J.W. Yu, Y.X. Han, Y.J. Li, P. Gao, W.B. Li, Mechanism and kinetics of the reduction of hematite to magnetite with CO-CO2 in a micro-fluidized bed, Minerals 7 (11) (2017) 209. [43] Z.Y. Zhou, X.L. Zhang, W.B. Li, P. Gao, Y.X. Han, Y.J. Li, J. Liu, An innovation for strengthen iron extraction from phosphorus-bearing refractory iron ore via suspension magnetization roasting and flotation, Adv. Powder Technol. 35(4) (2024) 104382. [44] X.L. Zhang, Y.X. Han, Y.S. Sun, Y.J. Li, Innovative utilization of refractory iron ore via suspension magnetization roasting: A pilot-scale study, Powder Technol. 352 (2019) 16-24. [45] Q. Zhao, J.L. Xue, W. Chen, Mechanism of improved magnetizing roasting of siderite-hematite iron ore using a synergistic CO-H2 mixture, J. Iron Steel Res. Int. 27 (1) (2020) 12-21. [46] S. Mishra, M. Baliarsingh, J. Mahanta, P. Chandra Beuria, Batch scale study on magnetizing roasting of low-grade iron ore tailings using fluidized bed roaster, Mater. Today Proc. 62 (2022) 5856-5860. [47] P.F. Liu, X.R. Zhu, Y.X. Han, Y.J. Li, P. Gao, Fluidization magnetization roasting of limonite ore using H2 as a reductant: Phase transformation, structure evolution, and kinetics, Powder Technol. 414 (2023) 118107. [48] Z.D. Tang, Q. Zhang, Y.S. Sun, P. Gao, Y.X. Han, Prospects of green extraction of iron from waste dumped flotation tailings by H2: A pilot case study, J. Clean. Prod. 330 (2022) 129853. [49] Q. Zhang, Y.S. Sun, P. Gao, Y.X Han, Hydrogen-based mineral phase transformation of bastnaesite: Detailed assessment of physicochemical properties and flotation behavior, Chem. Eng. J. 500 (2024) 156992. [50] G.B. Zhang, Y.M. Zhang, S.X. Bao, Y.Z. yuan, X.W. Jian, R.M. Li, Selective vanadium extraction from vanadium bearing ferro-phosphorus via roasting and pressure hydrogen reduction, Sep. Purif. Technol. 220 (2019) 293-299. [51] Z. Alinejad, N. Parham, M. Tawalbeh, A. Al-Othman, F. Almomani, Progress in green hydrogen production and innovative materials for fuel cells: A pathway towards sustainable energy solutions, Int. J. Hydrog. Energy (2024). [52] B.C. Liu, M.Z. Lai, Y.J. Wang, Y.B. Wang, J.L. Chen, C.Y. Song, Assessment of green hydrogen production by volatile renewable energy under different SSPs scenarios in China, Renew. Energy 235 (2024) 121296. [53] L.Y. Cui, Y. Xu, L. Wang, P. Ying, H. Wang, Investigating the hydration characteristics of iron tailings powder cement mortar produced by the mortar substitution method, J. Build. Eng. 81 (2024) 108100. [54] Z.D. Tang, X. Liu, P. Gao, Y.X. Han, B.W. Xu, Effective induction of magnetite on suspension magnetization roasting of hematite and reaction kinetics verification, Adv. Powder Technol. 33 (6) (2022) 103593. [55] J.W. Yu, H. Sun, P.Y. Li, W.J. Han, Y.J. Li, Y.X. Han, A pilot study on recovery of iron from sulfur-bearing hematite ore using hydrogen-based mineral phase transformation followed by magnetic separation, J. Environ. Chem. Eng. 11 (5) (2023) 110630. |
[1] | Wenbo Li, Xinyao Fu, Weiming Zhai, Xingyang Huang, Wenbin Chen, Chen Zhang, Wei Zhang, Cuiqing Li, Yong Luo, Feng Liu, Mingfeng Li. Hydrogenation kinetic of alkenes and aromatics over NiMo hydrotreatment catalysts [J]. Chinese Journal of Chemical Engineering, 2025, 79(3): 11-22. |
[2] | Zhe Ding, Li Guo, Fang Bai, Chao Hua, Ping Lu, Jinyi Chen. Toward the rational design for low-temperature hydrogenation of silicon tetrachloride: Mechanism and data-driven interpretable descriptor [J]. Chinese Journal of Chemical Engineering, 2025, 79(3): 172-184. |
[3] | Lingbing Bu, Li Guo, Yingqi Luo, Wenhua Yin, Yi Wu, Hongyu Zhang. Oxygen distribution in bed and safety analysis during hydrogen purification process from oxygen-containing feed gas [J]. Chinese Journal of Chemical Engineering, 2025, 78(2): 24-32. |
[4] | Farzin Sheikh, Hammad Hussain, Muhammad Yasin Naz, Bilal Shoukat, Yasin Khan, Muhammad Shoaib. Effect of sodium zeolite mixed metal oxide catalysts on catalytic conversion of mixed-density plastic into carbon nanotubes and hydrogen fuel [J]. Chinese Journal of Chemical Engineering, 2025, 78(2): 196-204. |
[5] | Jian Long, Mengru Zhang, Anlan Li, Cheng Huang, Dong Xue. Hybrid model of multimodal based on data enhancement and lumped reaction kinetics: Applying to industrial ebullated-bed residue hydrogenation unit [J]. Chinese Journal of Chemical Engineering, 2025, 78(2): 284-302. |
[6] | Junzhe Xu, Shuang Liu, Lin Li, Xian Qin, Ruixin Qu, Jinguo Wang, Di Liu, Gaixia Wei. Rational design of nitrogen-doped carbon for palladium catalysts in hydrogenation of hydrazo compounds [J]. Chinese Journal of Chemical Engineering, 2025, 77(1): 156-166. |
[7] | Danyang Zhao, Qiangqiang Xue, Yujun Wang, Guangsheng Luo. Controllable synthesis of hydrogen-bonded organic framework encapsulated enzyme for continuous production of chiral hydroxybutyric acid in a two-stage cascade microreactor [J]. Chinese Journal of Chemical Engineering, 2025, 77(1): 175-184. |
[8] | Hongmei Wu, Xinyu Liu, Yu Guo. Preparation of a zeolite-palladium composite membrane for hydrogen separation: Influence of zeolite film on membrane stability [J]. Chinese Journal of Chemical Engineering, 2024, 72(8): 44-52. |
[9] | Xin Li, Yue Ma, Xuning Wang, Jianguo Wu, Dong Cao, Daojian Cheng. Regulating the oxidation state of Pd to enhance the selective hydrogenation for 5-hydroxymethylfurfural [J]. Chinese Journal of Chemical Engineering, 2024, 72(8): 60-68. |
[10] | Yan Zhang, Xiangxue Zhang, Keng Sang, Wenyao Chen, Gang Qian, Jing Zhang, Xuezhi Duan, Xinggui Zhou, Weikang Yuan. Kinetics insights into size effects of carbon nanotubes’ growth and their supported platinum catalysts for 4,6-dinitroresorcinol hydrogenation [J]. Chinese Journal of Chemical Engineering, 2024, 72(8): 133-140. |
[11] | Zhendong Wang, Bofeng Zhang, Guozhu Liu, Xiangwen Zhang. Thermal stable Pt clusters anchored by K/TiO2-Al2O3 for efficient cycloalkane dehydrogenation [J]. Chinese Journal of Chemical Engineering, 2024, 72(8): 187-198. |
[12] | Yugang Shu, Jiaguang Zheng, Chengguo Yan, Ao Xia, Meiling Lv, Zhenxuan Ma, Zhendong Yao. Hydrogen release of NaBH4 below 60 °C with binary eutectic mixture of xylitol and erythritol additive [J]. Chinese Journal of Chemical Engineering, 2024, 71(7): 225-234. |
[13] | B. A. Abdulkadir, R. S. R. Mohd Zaki, A. T. Abd Wahab, S. N. Miskan, Anh-Tam Nguyen, Dai-Viet N. Vo, H. D. Setiabudi. A concise review on surface and structural modification of porous zeolite scaffold for enhanced hydrogen storage [J]. Chinese Journal of Chemical Engineering, 2024, 70(6): 33-53. |
[14] | Zhengjian Hou, Yuanyuan Zhu, Hua Chi, Li Zhao, Huijie Wei, Yanyan Xi, Lishuang Ma, Xiang Feng, Xufeng Lin. Silica-modified Pt/TiO2 catalysts with tunable suppression of strong metal-support interaction for cinnamaldehyde hydrogenation [J]. Chinese Journal of Chemical Engineering, 2024, 70(6): 189-198. |
[15] | Junbo Feng, Junyan Wu, Dongdong Yan, Yadong Zhang. Porous silica nano-flowers stabilized Pt-Pd bimetallic nanoparticles as heterogeneous catalyst for efficiently synthesizing guaiacol from 2-methoxycyclohexanol [J]. Chinese Journal of Chemical Engineering, 2024, 70(6): 222-233. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 30
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract |
|
|||||||||||||||||||||||||||||||||||||||||||||||||