[1] N. Evode, S. Ahmad Qamar, M. Bilal, D. Barcelo, H.M.N. Iqbal, Plastic waste and its management strategies for environmental sustainability, Case Stud. Chem. Environ. Eng. 4 (2021) 100142. [2] H. Sardon, A.P. Dove, Plastics recycling with a difference, Science 360 (6387) (2018) 380-381. [3] N. Zhou, L.L. Dai, Y.C. Lv, H. Li, W.Y. Deng, F.Q. Guo, P. Chen, H.W. Lei, R. Ruan, Catalytic pyrolysis of plastic wastes in a continuous microwave assisted pyrolysis system for fuel production, Chem. Eng. J. 418 (2021) 129412. [4] S.A. Sharuddin, F. Abnisa, W.W. Daud, M.K. Aroua, Pyrolysis of plastic waste for liquid fuel production as prospective energy resource, IOP Conf. Ser. Mater. Sci. Eng. 334 (2018) 012001. [5] J. Lim, Y. Ahn, J. Kim, Optimal sorting and recycling of plastic waste as a renewable energy resource considering economic feasibility and environmental pollution, Process. Saf. Environ. Prot. 169 (2023) 685-696. [6] O. Vieira, R.S. Ribeiro, J.L. Diaz de Tuesta, H.T. Gomes, A.M.T. Silva, A systematic literature review on the conversion of plastic wastes into valuable 2D graphene-based materials, Chem. Eng. J. 428 (2022) 131399. [7] P. Nalluri, P. Prem Kumar, M.R. Ch Sastry, Experimental study on catalytic pyrolysis of plastic waste using low cost catalyst, Mater. Today Proc. 45 (2021) 7216-7221. [8] Z.H. Chen, M. Monzavi, M. Latifi, S. Samih, J. Chaouki, Microwave-responsive SiC foam@zeolite core-shell structured catalyst for catalytic pyrolysis of plastics, Environ. Pollut. 307 (2022) 119573. [9] F. Motasemi, M.T. Afzal, A review on the microwave-assisted pyrolysis technique, Renew. Sustain. Energy Rev. 28 (2013) 317-330. [10] F.C. Borges, Z. Du, Q. Xie, J.O. Trierweiler, Y. Cheng, Y. Wan, Y. Liu, R. Zhu, X. Lin, P. Chen, R. Ruan, Fast microwave assisted pyrolysis of biomass using microwave absorbent, Bioresour. Technol. 156 (2014) 267-274. [11] X.Y. Ren, M. Shanb Ghazani, H. Zhu, W.Y. Ao, H. Zhang, E. Moreside, J.J. Zhu, P. Yang, N. Zhong, X.T. Bi, Challenges and opportunities in microwave-assisted catalytic pyrolysis of biomass: a review, Appl. Energy 315 (2022) 118970. [12] B.A. Mohamed, N. Ellis, C.S. Kim, X.T. Bi, Microwave-assisted catalytic biomass pyrolysis: effects of catalyst mixtures, Appl. Catal. B Environ. 253 (2019) 226-234. [13] Q.L. Xie, S.S. Li, R.C. Gong, G.J. Zheng, Y.L. Wang, P. Xu, Y. Duan, S.Z. Yu, M.Z. Lu, W.R. Ji, Y. Nie, J.B. Ji, Microwave-assisted catalytic dehydration of glycerol for sustainable production of acrolein over a microwave absorbing catalyst, Appl. Catal. B Environ. 243 (2019) 455-462. [14] E. Khaghanikavkani, Mohammed M. Farid, John Holdem, Allan Williamson, Microwave pyrolysis of plastic, J. Chem. Eng. Process Technol. 4 (3) (2013) 1-11. [15] M. Monzavi, Z.H. Chen, A. Solouki, J. Chaouki, Microwave-assisted catalytic pyrolysis of paraffin wax, Fuel 320 (2022) 123886. [16] M. Irfan, R. Saleem, B. Shoukat, H. Hussain, S. Shukrullah, M.Y. Naz, S. Rahman, A.A.J. Ghanim, G. Nawalany, T. Jakubowski, Production of combustible fuels and carbon nanotubes from plastic wastes using an in situ catalytic microwave pyrolysis process, Sci. Rep. 13 (1) (2023) 9057. [17] R.K. Singh, B. Ruj, A.K. Sadhukhan, P. Gupta, Impact of fast and slow pyrolysis on the degradation of mixed plastic waste: product yield analysis and their characterization, J. Energy Inst. 92 (6) (2019) 1647-1657. [18] H.L. Liu, X.Q. Ma, L.J. Li, Z.F. Hu, P.S. Guo, Y.H. Jiang, The catalytic pyrolysis of food waste by microwave heating, Bioresour. Technol. 166 (2014) 45-50. [19] J. A. Olalo, Characterization of pyrolytic oil produced from waste plastic in Quezon City, Philippines using non-catalytic pyrolysis method, Chem. Eng. Trans.86 (2021) 1495-1500. [20] K. Sivagami, K.V. Kumar, P. Tamizhdurai, D. Govindarajan, M. Kumar, I. Nambi, Conversion of plastic waste into fuel oil using zeolite catalysts in a bench-scale pyrolysis reactor, RSC Adv. 12 (13) (2022) 7612-7620. [21] T. Karayildirim, J. Yanik, M. Yuksel, H. Bockhorn, Characterisation of products from pyrolysis of waste sludges, Fuel 85 (10-11) (2006) 1498-1508. [22] W.A. Wan Mahari, C.T. Chong, C.K. Cheng, C.L. Lee, K. Hendrata, P.N. Yuh Yek, N.L. Ma, S.S. Lam, Production of value-added liquid fuel via microwave co-pyrolysis of used frying oil and plastic waste, Energy 162 (2018) 309-317. [23] A.Q. Zheng, T.J. Chen, J.W. Sun, L.Q. Jiang, J.H. Wu, Z.L. Zhao, Z. Huang, K. Zhao, G.Q. Wei, F. He, H.B. Li, Toward fast pyrolysis-based biorefinery: selective production of platform chemicals from biomass by organosolv fractionation coupled with fast pyrolysis, ACS Sustainable Chem. Eng. 5 (8) (2017) 6507-6516. [24] S. Budsaereechai, A.J. Hunt, Y. Ngernyen, Catalytic pyrolysis of plastic waste for the production of liquid fuels for engines, RSC Adv. 9 (10) (2019) 5844-5857. [25] A. Undri, L. Rosi, M. Frediani, P. Frediani, Fuel from microwave assisted pyrolysis of waste multilayer packaging beverage, Fuel 133 (2014) 7-16. [26] J. Kiefer, Recent advances in the characterization of gaseous and liquid fuels by vibrational spectroscopy, Energies 8 (4) (2015) 3165-3197. [27] M.X. Qing, Y.T. Long, L. Liu, Y. Yi, W.H. Li, R.Y. He, Y.S. Yin, H. Tian, J.Q. He, S. Cheng, J. Xiang, Pyrolysis of the food waste collected from catering and households under different temperatures: assessing the evolution of char structure and bio-oil composition, J. Anal. Appl. Pyrolysis 164 (2022) 105543. [28] Y. Jaafar, L. Abdelouahed, R. El Hage, A. El Samrani, B. Taouk, Pyrolysis of common plastics and their mixtures to produce valuable petroleum-like products, Polym. Degrad. Stab. 195 (2022) 109770. [29] L.A. Dombrovsky, S.S. Sazhin, S.V. Mikhalovsky, R. Wood, M.R. Heikal, Spectral properties of diesel fuel droplets, Fuel 82 (1) (2003) 15-22. [30] E.E.B. Cruz, N.V.G. Rivas, U.P. Garcia, A.M.M. Martinez, J.A.M. Banda, Characterization of crude oils and the precipitated asphaltenes fraction using UV spectroscopy, dynamic light scattering and microscopy. Recent Insights in Petroleum Science and Engineering. InTech, (2018), pp. [31] K.J. Johnson, S.L. Rose-Pehrsson, R.E. Morris, Monitoring diesel fuel degradation by gas chromatography-mass spectroscopy and chemometric analysis, Energy Fuels 18 (3) (2004) 844-850. [32] K.P. Shadangi, K. Mohanty, Thermal and catalytic pyrolysis of Karanja seed to produce liquid fuel, Fuel 115 (2014) 434-442. [33] W.U. Eze, I.C. Madufor, G.N. Onyeagoro, H.C. Obasi, M.I. Ugbaja, Study on the effect of Kankara zeolite-Y-based catalyst on the chemical properties of liquid fuel from mixed waste plastics (MWPs) pyrolysis, Polym. Bull. 78 (1) (2021) 377-398. [34] D.D. Yao, C.F. Wu, H.P. Yang, Y.S. Zhang, M.A. Nahil, Y.Q. Chen, P.T. Williams, H.P. Chen, Co-production of hydrogen and carbon nanotubes from catalytic pyrolysis of waste plastics on Ni-Fe bimetallic catalyst, Energy Convers. Manag. 148 (2017) 692-700. [35] A.A. Aboul-Enein, A.E. Awadallah, D.S. El-Desouki, N.A.K. Aboul-Gheit, Catalytic pyrolysis of sugarcane bagasse by zeolite catalyst for the production of multi-walled carbon nanotubes, J. Fuel Chem. Technol. 49 (10) (2021) 1421-1434. [36] A. Pandey, S. Dalal, S. Dutta, A. Dixit, Structural characterization of polycrystalline thin films by X-ray diffraction techniques, J. Mater. Sci. Mater. Electron. 32 (2) (2021) 1341-1368. [37] H. Yahya, S.N. Karim, N. Yahaya, S.A.S. Syed Abd Halim, F.I. Zanuari, H.N. Yahya, Occurrence and pathways of microplastics, quantification protocol and adverseeffects of microplastics towards freshwater and seawater biota, Food Res. 7 (5) (2023) 164-180. [38] C. Jonscher, M. Seifert, N. Kretzschmar, M.S. Marschall, M. Le Anh, T. Doert, O. Busse, J.J. Weigand, Origin of morphology change and effect of crystallization time and Si/Al ratio during synthesis of zeolite ZSM-5, ChemCatChem 14 (3) (2022) e202101248. [39] S. Battiato, M.M. Giangregorio, M.R. Catalano, R. Lo Nigro, M. Losurdo, G. Malandrino, Morphology-controlled synthesis of NiO films: the role of the precursor and the effect of the substrate nature on the films' structural/optical properties, RSC Adv. 6 (37) (2016) 30813-30823. [40] M.S. Kalem, B. Ozeler, Using of adsorbents produced from waste polyethylene pyrolysis char in adsorption of some aromatic hydrocarbon gases and recoverability of waste adsorbents as fuel, Water Air Soil Pollut. 234 (1) (2023) 38. [41] Y.M. Chang, W.T. Tsai, M.H. Li, Chemical characterization of char derived from slow pyrolysis of microalgal residue, J. Anal. Appl. Pyrolysis 111 (2015) 88-93. [42] M. Hajian, M. Rostamizadeh, Nickel promoted Si-rich ZSM-5 nanocatalyst remarkably converts LDPE plastic waste to gasoline range hydrocarbons in a dual-bed semi-batch reactor at atmospheric pressure, J. Anal. Appl. Pyrolysis 173 (2023) 106051. [43] A. Chaudhary, J. Lakhani, P. Dalsaniya, P. Chaudhary, A. Trada, N.K. Shah, D.S. Upadhyay, Slow pyrolysis of low-density poly-ethylene (LDPE): a batch experiment and thermodynamic analysis, Energy 263 (2023) 125810. [44] E.A. Williams, P.T. Williams, The pyrolysis of individual plastics and a plastic mixture in a fixed bed reactor, J. Chem. Technol. Biotechnol. 70 (1) (1997) 9-20. [45] M. Sogancioglu, E. Yel, G. Ahmetli, Pyrolysis of waste high density polyethylene (HDPE) and low density polyethylene (LDPE) plastics and production of epoxy composites with their pyrolysis chars, J. Clean. Prod. 165 (2017) 369-381. |