Chinese Journal of Chemical Engineering ›› 2025, Vol. 78 ›› Issue (2): 1-23.DOI: 10.1016/j.cjche.2024.10.016
Hui Ming1, Xudong Zhang1, Xinping Huang2, Lihua Cheng3, Libo Zhang3
Received:
2024-06-05
Revised:
2024-10-18
Accepted:
2024-10-21
Online:
2024-12-01
Published:
2025-02-08
Supported by:
Hui Ming1, Xudong Zhang1, Xinping Huang2, Lihua Cheng3, Libo Zhang3
通讯作者:
Libo Zhang,E-mail:zhanglibo_gdupt@163.com
基金资助:
Hui Ming, Xudong Zhang, Xinping Huang, Lihua Cheng, Libo Zhang. Advances in the preparation process and mechanism study of high-purity anhydrous magnesium chloride from magnesium chloride hexahydrate[J]. Chinese Journal of Chemical Engineering, 2025, 78(2): 1-23.
Hui Ming, Xudong Zhang, Xinping Huang, Lihua Cheng, Libo Zhang. Advances in the preparation process and mechanism study of high-purity anhydrous magnesium chloride from magnesium chloride hexahydrate[J]. 中国化学工程学报, 2025, 78(2): 1-23.
[1] J.Y. Bai, Y. Yang, C. Wen, J. Chen, G. Zhou, B. Jiang, X.D. Peng, F.S. Pan, Applications of magnesium alloys for aerospace: a review, J. Magnesium Alloys 11 (10) (2023) 3609-3619. [2] S.V. Satya Prasad, S.B. Prasad, K. Verma, R.K. Mishra, V. Kumar, S. Singh, The role and significance of magnesium in modern day research-a review, J. Magnesium Alloys 10 (1) (2022) 1-61. [3] J.F. Song, J. She, D.L. Chen, F.S. Pan, Latest research advances on magnesium and magnesium alloys worldwide, J. Magnesium Alloys 8 (1) (2020) 1-41. [4] T.C. Xu, Y. Yang, X.D. Peng, J.F. Song, F.S. Pan, Overview of advancement and development trend on magnesium alloy, J. Magnesium Alloys 7 (3) (2019) 536-544. [5] Y. Yang, X.M. Xiong, J. Chen, X.D. Peng, D.L. Chen, F.S. Pan, Research advances in magnesium and magnesium alloys worldwide in 2020, J. Magnesium Alloys 9 (3) (2021) 705-747. [6] B. Liu, J. Yang, X.Y. Zhang, Q. Yang, J.S. Zhang, X.Q. Li, Development and application of magnesium alloy parts for automotive OEMs: a review, J. Magnesium Alloys 11 (1) (2023) 15-47. [7] G.G. Wang, J.P. Weiler, Recent developments in high-pressure die-cast magnesium alloys for automotive and future applications, J. Magnesium Alloys 11 (1) (2023) 78-87. [8] J.F. Song, J. Chen, X.M. Xiong, X.D. Peng, D.L. Chen, F.S. Pan, Research advances of magnesium and magnesium alloys worldwide in 2021, J. Magnesium Alloys 10 (4) (2022) 863-898. [9] Y. Yang, X.M. Xiong, J. Chen, X.D. Peng, D.L. Chen, F.S. Pan, Research advances of magnesium and magnesium alloys worldwide in 2022, J. Magnesium Alloys 11 (8) (2023) 2611-2654. [10] S.R. Golroudbary, I. Makarava, E. Repo, A. Kraslawski, P. Luukka, Magnesium life cycle in automotive industry, Procedia CIRP 105 (2022) 589-594. [11] A. Chatterjee, L. Qi, A. Misra, In situ transmission electron microscopy investigation of nucleation of GP zones under natural aging in Al-Zn-Mg alloy, Scripta Mater. 207 (2022) 114319. [12] W.T. Sun, B. Wu, H. Fu, X.S. Yang, X.G. Qiao, M.Y. Zheng, Y. He, J. Lu, S.Q. Shi, Combining gradient structure and supersaturated solid solution to achieve superior mechanical properties in WE43 magnesium alloy, J. Mater. Sci. Technol. 99 (2022) 223-238. [13] A. Githens, S. Ganesan, Z. Chen, J. Allison, V. Sundararaghavan, S. Daly, Characterizing microscale deformation mechanisms and macroscopic tensile properties of a high strength magnesium rare-earth alloy: a combined experimental and crystal plasticity approach, Acta Mater. 186 (2020) 77-94. [14] X. Pang, L. Ran, Y.A. Chen, Y.X. Luo, F.S. Pan, Enhancing hydrogen storage performance via optimizing Y and Ni element in magnesium alloy, J. Magnesium Alloys 10 (3) (2022) 821-835. [15] X.L. Ma, Q. Jiao, L.J. Kecskes, J.A. El-Awady, T.P. Weihs, Effect of basal precipitates on extension twinning and pyramidal slip: a micro-mechanical and electron microscopy study of a Mg-Al binary alloy, Acta Mater. 189 (2020) 35-46. [16] T. Zhang, W. Wang, J. Liu, L.Q. Wang, Y.J. Tang, K.S. Wang, A review on magnesium alloys for biomedical applications, Front. Bioeng. Biotechnol. 10 (2022) 953344. [17] V. Tsakiris, C. Tardei, F.M. Clicinschi, Biodegradable Mg alloys for orthopedic implants-a review, J. Magnesium Alloys 9 (6) (2021) 1884-1905. [18] D. Li, D.C. Zhang, Q. Yuan, L.H. Liu, H. Li, L. Xiong, X.N. Guo, Y. Yan, K. Yu, Y.L. Dai, T. Xiao, Y.C. Li, C.E. Wen, In vitro and in vivo assessment of the effect of biodegradable magnesium alloys on osteogenesis, Acta Biomater. 141 (2022) 454-465. [19] J. Sun, W.B. Du, J.J. Fu, K. Liu, S.B. Li, Z.H. Wang, H.X. Liang, A review on magnesium alloys for application of degradable fracturing tools, J. Magnesium Alloys 10 (10) (2022) 2649-2672. [20] W.T. Li, W. Qiao, X. Liu, D. Bian, D.N. Shen, Y.F. Zheng, J. Wu, K.Y.H. Kwan, T.M. Wong, K.M.C. Cheung, K.W.K. Yeung, Biomimicking bone-implant interface facilitates the bioadaption of a new degradable magnesium alloy to the bone tissue microenvironment, Adv. Sci. 8 (23) (2021) e2102035. [21] M.T.P. Prado, C.M. Cepeda-Jimenez, Materials science: strength ceiling smashed for light metals, Nature 528 (7583) (2015) 486-487. [22] F. Gao, Y. Liu, Z.R. Nie, X.Z. Gong, Z.H. Wang, Variation trend and driving factors of greenhouse gas emissions from Chinese magnesium production, Environ. Sci. Technol. 49 (21) (2015) 12662-12669. [23] J.D. Du, W.J. Han, Y.H. Peng, Life cycle greenhouse gases, energy and cost assessment of automobiles using magnesium from Chinese Pidgeon process, J. Clean. Prod. 18 (2) (2010) 112-119. [24] Y. Tian, L.P. Wang, B. Yang, Y.N. Dai, B.Q. Xu, F. Wang, N. Xiong, Comparative evaluation of energy and resource consumption for vacuum carbothermal reduction and Pidgeon process used in magnesium production, J. Magnesium Alloys 10 (3) (2022) 697-706. [25] J.L. Xu, J.H. Liu, D. Guo, M. Chen, P.X. Yang, R.B. Li, S.J. Zhang, Mechanism of slag pellets sticking on the wall of reduction pot in magnesium production by Pidgeon process, J. Magnesium Alloys 12 (6) (2024) 2397-2412. [26] D.Z. Hou, L. Liu, Y.P. Ke, X.Y. Zhang, Q.X. Yang, H.F. Qiu, Q. Yu, Thermodynamic study of magnesium (Mg) production by the pidgeon process: the distribution of MgO and axial thermal field, Appl. Therm. Eng. 236 (2024) 121885. [27] R.B. Li, S.J. Zhang, P.X. Yang, J.H. Liu, F.Q. Liu, Research, development and application of compound-vertical-retort technology for magnesium production, J. Magnesium Alloys 11 (12) (2023) 4724-4736. [28] H.Q. Li, W.J. Zhang, Q. Li, B. Chen, Updated CO2 emission from Mg production by pidgeon process: implications for automotive application life cycle, Resour. Conserv. Recycl. 100 (2015) 41-48. [29] R.B. Li, S.J. Zhang, L.J. Guo, J.J. Wei, Numerical study of magnesium (Mg) production by the pidgeon process: impact of heat transfer on Mg reduction process, Int. J. Heat Mass Tran. 59 (2013) 328-337. [30] L. Guo, H.Y. Yin, W.M. Li, S.Y. Wang, K.F. Du, H. Shi, X. Wang, D.H. Wang, Liquid-metal-electrode-assisted electrolysis for the production of sodium and magnesium, J. Magnesium Alloys (2024). [31] T.H. Lee, T.H. Okabe, J.Y. Lee, Y.M. Kim, J. Kang, Development of a novel electrolytic process for producing high-purity magnesium metal from magnesium oxide using a liquid tin cathode, J. Magnesium Alloys 9 (5) (2021) 1644-1655. [32] H.J. Jeoung, T.H. Lee, J.Y. Lee, K.W. Yi, J. Kang, Production of high-purity Mg metal from dolomite through novel molten salt electrolysis and vacuum distillation, J. Magnesium Alloys 11 (4) (2023) 1308-1320. [33] W.J. Ding, F. Yang, A. Bonk, T. Bauer, Molten chloride salts for high-temperature thermal energy storage: continuous electrolytic salt purification with two Mg-electrodes and alternating voltage for corrosion control, Sol. Energy Mater. Sol. Cells 223 (2021) 110979. [34] X.J. Pan, Z.H. Dou, T.A. Zhang, D.L. Meng, Y.Y. Fan, Separation of metal ions and resource utilization of magnesium from saline lake brine by membrane electrolysis, Sep. Purif. Technol. 251 (2020) 117316. [35] Y. Tian, B.Q. Xu, B. Yang, C.B. Yang, T. Qu, D.C. Liu, Y.N. Dai, Magnesium production by carbothermic reduction in vacuum, J. Magnesium Alloys 3 (2) (2015) 149-154. [36] H.J. Jeoung, T.H. Lee, Y. Kim, J.Y. Lee, Y.M. Kim, T.H. Okabe, K.W. Yi, J. Kang, Use of various MgO resources for high-purity Mg metal production through molten salt electrolysis and vacuum distillation, J. Magnesium Alloys 11 (2) (2023) 562-579. [37] R. Kong, F.F. Xue, J. Wang, H.Y. Zhai, L.N. Zhao, Research on mineral resources and environment of salt lakes in Qinghai Province based on system dynamics theory, Res. Pol. 52 (2017) 19-28. [38] S.Y. Hu, Q.S. Zhao, G.C. Wang, J.W. Zhang, J. Feng, Hydrochemical dynamic characteristics and evolution of underground brine in the Mahai salt lake of the Qaidam Basin Qinghai-Tibet Plateau, Acta Geol. Sin. Engl. Ed. 92 (5) (2018) 1981-1990. [39] R. Hui, H.J. Tan, X.R. Li, B.Y. Wang, Variation of soil physical-chemical characteristics in salt-affected soil in the Qarhan Salt Lake, Qaidam basin, J. Arid Land 14 (3) (2022) 341-355. [40] S.S. Xu, J.F. Song, Q.Y. Bi, Q. Chen, W.M. Zhang, Z.X. Qian, L. Zhang, S.A. Xu, N. Tang, T. He, Extraction of lithium from Chinese salt-lake brines by membranes: design and practice, J. Membr. Sci. 635 (2021) 119441. [41] S.J. Wang, Y.Q. Jin, X.D. Yang, J.M. Xie, Y.F. Han, Development status and prospects of metal magnesium new material industry in Qinghai Salt Lake, Ind. Miner. Process. (2024) 1-7(, in Chinese). [42] Z.M. Zhang, X.C. Lu, Y. Yan, T.Z. Wang, The dehydration of MgCl2·6H2O by inhibition of hydrolysis and conversion of hydrolysate, J. Anal. Appl. Pyrolysis 138 (2019) 114-119. [43] K.S.P. Karunadasa, R.M.G. Rajapakse, H.M.T.G.A. Pitawala, C.H. Manoratne, Microstructural insight into the thermal decomposition of MgCl2·6H2O examined by in situ high-temperature X-ray powder diffraction, J. Solid State Chem. 322 (2023) 123965. [44] Q.Z. Huang, G.M. Lu, J. Wang, J.G. Yu, Thermal decomposition mechanisms of MgCl2·6H2O and MgCl2·H2O, J. Anal. Appl. Pyrolysis 91 (1) (2011) 159-164. [45] P. Li, B.X. Liu, X. Lai, W.H. Liu, L. Gao, Z.F. Tang, Thermal decomposition mechanism and pyrolysis products of waste bischofite calcined at high temperature, Thermochim. Acta 710 (2022) 179164. [46] Z.M. Zhang, X.C. Lu, S.P. Yang, F. Pan, Y. Wang, Preparation of anhydrous magnesium chloride from ammonium carnallite, Mater. Manuf. Process. 28 (1) (2012) 5-9. [47] Z.M. Zhang, X.C. Lu, S.W. Chen, T.Z. Wang, Y. Yan, The conversion from magnesium hydroxychloride to anhydrous magnesium chloride by solid-state reaction, Metall. Mater. Trans. B 47 (1) (2016) 773-778. [48] X.Y. Liu, X.M. Cui, Research progress in dehydration technology of bischofite for preparing anhydrous magnesium chloride, Proceedings of the 2016 5th International Conference on Civil, Architectural and Hydraulic Engineering (ICCAHE 2016), Atlantis Press, Paris, 2016, pp. 261-267. [49] N.B. Zhou, B.Z. Chen, X.K. He, Y.B. Li, Preparation and characteristic research of anhydrous magnesium chloride with dehydrated ammonium carnallite, J. Cent. South Univ. Technol. 13 (4) (2006) 373-378. [50] L.L. Guo, G.F. Tu, N.X. Feng, Y.Z. Di, Study on the physicochemical properties of bischofite solution in Qinghai Salt Lake, Light Metal (2023) 44-47(, in Chinese). [51] G.J. Kipouros, D.R. Sadoway, A thermochemical analysis of the production of anhydrous MgCl2, J. Light Met. 1 (2) (2001) 111-117. [52] F. Xia, F.L. Ma, Q. Lan, Y.S. Du, Analysis on the influence of oxygen-containing compounds impurities in anhydrous magnesium chloride granules on magnesium smelting by salt lake brine method, Light Met. (2023) 39-43, (in Chinese). [53] X.F. Song, G.S. Liu, Z. Sun, J.G. Yu, Comparative study on the molecular and electronic structure of MgCl2·6NH3 and MgCl2·6H2O, Asia Pac. J. Chem. Eng. 7 (2) (2012) 221-226. [54] S. Kashani-Nejad, K.W. Ng, R. Harris, MgOHCl thermal decomposition kinetics, Metall. Mater. Trans. B 36 (1) (2005) 153-157. [55] K.W. Ng, S. Kashani-Nejad, R. Harris, Kinetics of MgO chlorination with HCl gas, Metall. Mater. Trans. B 36 (3) (2005) 405-409. [56] S. Kashani-Nejad, K.W. Ng, R. Harris, Chlorination of MgOHCl with HCl gas, Miner. Process. Extr. Metall. (IMM Trans. Sect. C) 115 (3) (2006) 121-122. [57] Z.M. Zhang, X.C. Lu, T.Z. Wang, Y. Yan, F. Pan, The dehydration of MgCl2·6H2O in MgCl2·6H2O-KCl-NH4Cl system, J. Anal. Appl. Pyrolysis 110 (2014) 248-253. [58] Z.M. Zhang, X.C. Lu, Preparation process of magnesium alloys by complex salt dehydration-electrochemical codeposition, Mater. Manuf. Process. 34 (6) (2019) 591-597. [59] J.X. Xu, T.X. Li, T.S. Yan, J.W. Chao, R.Z. Wang, Dehydration kinetics and thermodynamics of magnesium chloride hexahydrate for thermal energy storage, Sol. Energy Mater. Sol. Cells 219 (2021) 110819. [60] P. Ficara, The Production of Anhydrous MgCl2, Ph.D. Dissertation, McGill University, Canada, 1996. [61] H.P. Huinink, D. Zahn, Elucidating water dynamics in MgCl2 hydrates from molecular dynamics simulation, Solid State Sci. 69 (2017) 64-70. [62] Y.H. Duan, S.G. Zhou, Y. Sun, M.J. Peng, The electronic structure and phase diagram of chlorine adsorption on Mg (0001) surface, Comput. Mater. Sci. 84 (2014) 108-114. [63] B. Smeets, E. Iype, S.V. Nedea, H.A. Zondag, C.C.M. Rindt, A DFT based equilibrium study on the hydrolysis and the dehydration reactions of MgCl2 hydrates, J. Chem. Phys. 139 (12) (2013) 124312. [64] X.F. Huang, Y.L. Wu, M.D. Yang, H.S. Hu, J. Dang, J.A. Zhang, Mechanism and kinetics of thermal decomposition of bischofite, Chin. J. Process Eng. 6 (5) (2006) 729-733. [65] G.S. Liu, X.F. Song, X.T. Wang, J.G. Yu, Theoretical study of molecular and electronic structure of MgCl2·6H2O, Comput. Appl. Chem. 22 (7) (2005) 509-511. [66] X.F. Song, G.S. Liu, J.G. Yu, Theoretical chemical study on the thermal decomposition of magnesium chloride monohydrate, J. Salt Sci. Chem. Ind. 30 (2001) 3-6, (in Chinese). [67] Q.Z. Huang, G.M. Lu, J. Wang, J.G. Yu, Thermal decomposition mechanism of MgCl2·6H2O, J. Inorg. Mater. 25 (3) (2010) 306-310. [68] L. Gu, New Process for Preparing Anhydrous Magnesium Chloride, CN Pat., 1412114A (2001), (in Chinese). [69] R.E. Brown, Magnesium industry growth in the 1990 period, in: S.N. Mathaudhu, A.A. Luo, N.R. Neelameggham, E.A. Nyberg, W.H. Sillekens (Eds.), Essential Readings in Magnesium Technology, Springer International Publishing, Cham, 2016, pp. 3-12. [70] G.C. Holywell, Magnesium: the first quarter millennium, JOM 57 (7) (2005) 26-33. [71] K. Adham, C. Lee, K. O'Keefe, Fluid bed dehydration of magnesium chloride, in: S.N. Mathaudhu, W.H. Sillekens, N.R. Neelameggham, N. Hort (Eds.), Magnesium Technology 2012, Springer International Publishing, Cham, 2016, pp. 49-53. [72] Y.S. Du, Q.G. Sun, P.H. Ma, M.X. Chu, Y. Huo, M.Z. Li, S.D. Wang, J.L. Han, Method for Preparing Anhydrous Magnesium Chloride, CN Pat., 103922371A (2014), (in Chinese). [73] J.G. Peacey, G.B. Harris, Production of Magnesium Metal from Magnesium Containing Materials, US Pat., 4800003A (1989). [74] H.T. Geng, G.H. Ying, Metal Magnesium and Preparation Method Thereof, CN Pat., 117344351A (2024), (in Chinese). [75] H.C. Eom, H. Park, H.S. Yoon, Preparation of anhydrous magnesium chloride from ammonium magnesium chloride hexahydrate, Adv. Powder Technol. 21 (2) (2010) 125-130. [76] Z.M. Zhang, X.C. Lu, F. Pan, Y. Wang, S.P. Yang, Preparation of anhydrous magnesium chloride from magnesium chloride hexahydrate, Metall. Mater. Trans. B 44 (2) (2013) 354-358. [77] Z.M. Zhang, X.C. Lu, S.P. Yang, F. Pan, Preparation of anhydrous magnesium chloride from magnesia, Ind. Eng. Chem. Res. 51 (29) (2012) 9713-9718. [78] Z.M. Zhang, X.C. Lu, Y. Yan, A novel pathway for the preparation of Mg metal from magnesia, J. Magnesium Alloys 10 (10) (2022) 2847-2856. [79] X.C. Lu, Z.M. Zhang, Method and Device for Preparing Anhydrous Magnesium Chloride, CN Pat., 104418370A (2015), (in Chinese). [80] N.B. Zhou, B.Z. Chen, X.K. He, Y.B. Li, Preparation of anhydrous magnesium chloride in a gas-solid reaction with ammonium carnallite, Front. Chem. China 1 (4) (2006) 384-388. [81] D.G. Wang, Z.B. Li, Study of crystallization kinetics of ammonium carnallite and ammonium chloride in the NH4Cl-MgCl2-H2O system, Ind. Eng. Chem. Res. 51 (5) (2012) 2397-2406. [82] J.X. Wu, G.C. Zhang, B. Zhao, S. Wang, J.L. Cao, Phase diagram of the quaternary system KCl-MgCl2-NH4Cl-H2O at T=60.00 ℃ and their application, J. Solut. Chem. 46 (1) (2017) 58-69. [83] N.B. Zhou, H. Xiao, B.Z. Chen, Preparation of anhydrous magnesium chloride from bischofite by gas-solid reaction, Chem. Res. Appl. 22 (10) (2010) 1290-1294. [84] N.B. Zhou, Study on New Technology and Fundamental Theory of Anhydrous Magnesium Chloride Prepared from Ammonium Carnallite, Ph.D. Dissertation, Central South University, China, 2005. [85] G.M. Long, P.H. Ma, Z.M. Wu, M.Z. Li, M.X. Chu, Investigation of thermal decomposition of MgCl2 hexammoniate and MgCl2 biglycollate biammoniate by DTA-TG, XRD and chemical analysis, Thermochim. Acta 412 (1-2) (2004) 149-153. [86] S.Y. Dou, H.F. Guo, B. Zhao, C.Y. Xue, J.L. Cao, Phase diagrams of the quaternary system NaCl-MgCl2-NH4Cl in water at 0 and 25 ℃ and their application, J. Chem. Eng. Data 61 (1) (2016) 450-457. [87] R. Hamze, I. Nevoigt, U. Sazama, M. Froba, M. Steiger, Carnallite double salt for thermochemical heat storage, J. Energy Storage 86 (2024) 111404. [88] M. Arai, Y. Fujimoto, M. Koshimizu, T. Yanagida, K. Asai, Scintillation and photoluminescence properties of (Tl1-xAx)MgCl3 (where A = alkali metal), J. Alloys Compd. 823 (2020) 153871. [89] C. Villada, W.J. Ding, A. Bonk, T. Bauer, Engineering molten MgCl2-KCl-NaCl salt for high-temperature thermal energy storage: review on salt properties and corrosion control strategies, Sol. Energy Mater. Sol. Cells 232 (2021) 111344. [90] C. Balarew, C. Christov, V. Valyashko, S. Petrenko, Thermodynamics of formation of carnallite type double salts, J. Solut. Chem. 22 (2) (1993) 173-181. [91] V. Mamani, A. Gutierrez, A.I. Fernandez, S. Ushak, Industrial carnallite-waste for thermochemical energy storage application, Appl. Energy 265 (2020) 114738. [92] Z.M. Zhang, X.C. Lu, T.Z. Wang, Y. Yan, S.W. Chen, Synthesis and electrolysis of K3NaMgCl6, Ind. Eng. Chem. Res. 54 (5) (2015) 1433-1438. [93] Y.L. Wu, X.F. Huang, M.D. Yang, S.P. Zou, J. Dang, H.S. Hu, Study on the mechanisms and kinetics of complex's thermal decomposition getting anhydrous magnesium chloride, J. Anal. Appl. Pyrolysis 81 (1) (2008) 133-135. [94] J.F. Wang, S.P. Sun, Z.B. Li, Modeling of solid-liquid equilibrium for the [HAE]Cl-MgCl2-H2O system, Ind. Eng. Chem. Res. 50 (13) (2011) 8314-8322. [95] S.P. Sun, J.F. Wang, Z.B. Li, Solubility and self-consistent modeling of aniline hydrochloride in H-Mg-Na-Ca-Al-Cl-H2O system at the temperature range of 288-348 K, Ind. Eng. Chem. Res. 51 (9) (2012) 3783-3790. [96] H.S. Hu, Y.L. Wu, M.D. Yang, Determination of saturated vapour pressure of aniline hydrochloride and vapour-liquid equilibrium of the water-aniline hydrochloride system, Fluid Phase Equil. 414 (2016) 133-142. [97] H.S. Hu, M.D. Yang, Y.L. Wu, J. Dang, Dehydration of bischofite for anhydrous magnesium chloride preparation by hydrated double salt method, Nonferrous Met. Extr. Metall. (7) (2011) 17-21, 38. [98] Y.L. Wu, X.F. Huang, M.D. Yang, H.S. Hu, J.A. Zhang, Mechanisms and kinetics for preparation of anhydrous magnesium chloride by complex thermal decomposition method, Chin. J. Inorg. Chem. 23 (1) (2007) 149-154. [99] Q.Y. Ni, Y.L. Wu, M.D. Yang, H.S. Hu, Y.F. He, L.J. Zhang, J. Dang, TG-FTIR analysis of thermal degradation of bischofite's crystals with aniline hydrochloride, Spectrosc. Spectr. Anal. 31 (7) (2011) 1747-1751, (in Chinese). [100] J.X. Yang, J. Dang, Y.L. Wu, M.D. Yang, J.J. Yuan, N. Duo, Study on the hydrochloride complex salt and production of anhydrous magnesium chloride in fluidized bed, J. Salt Chem. Ind. 41 (4) (2012) 10-15. [101] J. Qu, Dissolution and crystallization behavior of magnesium chloride hexahydrate in ethylene, Chem. Eng. Des. Commun. 45 (6) (2019) 126-128, (in Chinese). [102] D.M. Zhang, T. Azakami, A. Yazawa, Utilization of alcohols for the dehydration of magnesium chloride, Can. Metall. Q. 31 (3) (1992) 189-194. [103] S.Y. Wu, X.Y. Zhou, J. Li, H.Z. Liu, R.Y. Xu, Dehydration technology of bischofite by butanol complexation distillation, J. Central South Univ. (Sci. Technol.) (2006) 47-51, (in Chinese). [104] J.A. Eisele, D.J. Bauer, Method for Dehydrating Metal Chlorides, US Pat., 4105747A (1978). [105] Z.G. Lei, B.H. Chen, Y.M. Koo, D.R. MacFarlane, Introduction: ionic liquids, Chem. Rev. 117 (10) (2017) 6633-6635. [106] A. Berthod, M.J. Ruiz-Angel, S. Carda-Broch, Recent advances on ionic liquid uses in separation techniques, J. Chromatogr. A 1559 (2018) 2-16. [107] Z.B. Li, J.F. Wang, Method for Preparing Anhydrous Magnesium Chloride for Electrolyzing Magnesium, CN Pat., 102145903A (2011), (in Chinese). [108] S.J. Zhang, M.Y. Ma, Y. Zuo, X.P. Zhang, Method for producing anhydrous compound by dehydrating at low temperature using ionic liquid, WO Pat., 2012000168A1 (2012). [109] M.I. Pownceby, D.H. Jenkins, R. Ruzbacky, S. Saunders, Preparation of anhydrous magnesium chloride: solid-liquid phase diagram for the system MgCl2-NH3-C2H4[OH]2 at 323 K, J. Chem. Eng. Data 57 (10) (2012) 2855-2862. [110] M.I. Pownceby, D.H. Jenkins, R. Ruzbacky, S. Saunders, Solubilities of ammonia and ammonium chloride in ammoniated and nonammoniated methanol and ethylene glycol between 298 K and 353 K, J. Chem. Eng. Data 57 (5) (2012) 1449-1455. [111] X.F. Song, J. Wang, X.T. Wang, J.G. Yu, Preparation of anhydrous magnesium chloride from MgCl2·6H2O, Ⅱ Thermal decomposition mechanism of the intermediate product, Mater. Sci. Forum 488-489 (2005) 61-64. [112] V.J. Christensen, G.C. Egleson, E.L. Carlson, Preparation of Anhydrous Magnesium Chloride, US Pat., 3092450A (1960). [113] C.N. Kimberlin, W.F. Arey, F.J. Buchmann, Dehydration of Magnesium Chloride, US Pat., 3347625A (1967). [114] H. Zhou, S. Zhang, F. Gao, X.Q. Bai, Z.L. Sha, Solubility of ammonia in ethylene glycol between 303 K and 323 K under low pressure from 0.030 to 0.101 MPa, Chin. J. Chem. Eng. 22 (2) (2014) 181-186. [115] N.B. Zhou, H. Xiao, B.Z. Chen, Z.H. Hou, Kinetics of non-isothermal decomposition process for ammoniation magnesium chloride, Chem. Res. Appl. 19 (9) (2007) 1045-1050. [116] O.G. Sivilotti, J.V. Sang, R.J.R. Lemay, Process for Making Anhydrous Magnesium Chloride, US Pat., 5514359A (1994). [117] N.B. Zhou, B.Z. Chen, X.K. He, Y.B. Li, Preparation and characterization of anhydrous magnesium chloride in organic solvent, Chin. J. Inorg. Chem. 21 (2005) 286-290, (in Chinese). [118] J.G. Yu, Q. Lu, X.F. Song, J. Wang, M. Hu, Method for preparing anhydrous magnesium chloride, CN Pat., 1333183A (2002), (in Chinese). [119] D.G. Braithwaite, R.J. Allain, Anhydrous Magnesium Chloride Using Ethylene Glycol and Ammonia, US Pat., 3966888A (1976). [120] R.J. Allain, D.G. Braithwaite, Anhydrous Magnesium Chloride Process, US Pat., 3983224A (1976). [121] F.J. Buchmann, Pure Magnesium Chloride Prepared by the Simultaneous Extraction and Azeotropic Drying of a Salt Mixture, US Pat., 3352634A (1965). [122] G.J. Sheehan, F.S. Wong, M.M. Hourn, M. Kodama, D.H. Jenkins, Anhydrous Magnesium Chloride, US Pat., 6143270A (1994). [123] G.J. Sheehan, F.S. Wong, M.M. Horn, Y.X. Er, D.H. Jenkins, Anhydrous Magnesium Chloride, CN Pat., 1135743A (1996). [124] R.K. Motkuri, R.S. Vemuri, D. Barpaga, H. Schaef, J.S. Loring, P.F. Martin, D.B. Lao, S.K. Nune, B.P. McGrail, An efficient, solvent-free process for synthesizing anhydrous MgCl2, ACS Sustainable Chem. Eng. 6 (1) (2018) 1048-1054. |
[1] | Farzin Sheikh, Hammad Hussain, Muhammad Yasin Naz, Bilal Shoukat, Yasin Khan, Muhammad Shoaib. Effect of sodium zeolite mixed metal oxide catalysts on catalytic conversion of mixed-density plastic into carbon nanotubes and hydrogen fuel [J]. Chinese Journal of Chemical Engineering, 2025, 78(2): 196-204. |
[2] | Yilin Wang, Shijie Li, Jianhui Qi, Hui Li, Kuihua Han, Jianli Zhao. Preparation and characterization of high performance super activated carbon based on coupled coal/sargassum precursors [J]. Chinese Journal of Chemical Engineering, 2025, 77(1): 81-92. |
[3] | Xiangchun Liu, Ying Chen, Huan Song, Ping Cui. Modification mechanism of caking property of polystyrene waste using low-temperature pyrolysis and its use in coal-blending coking [J]. Chinese Journal of Chemical Engineering, 2025, 77(1): 93-101. |
[4] | Lifang Ge, Meizhen Gao, Xiaosheng Zhang, Jiang Wang, Qi Shi, Jinxiang Dong. Hydrophobic CHA-ZIFs with a junctional trap between cha and d6r cages for adsorption of 2,3-butanediol in aqueous solution [J]. Chinese Journal of Chemical Engineering, 2024, 73(9): 90-100. |
[5] | Bin Li, Biqin Shen, Ran Tao, Chenwei Hu, Yufeng Wu, Haoran Yuan, Jing Gu, Yong Chen. Effect of copper content on the pyrolysis process of organic components in waste printed circuit boards: Based on experimental and quantum chemical DFT simulations [J]. Chinese Journal of Chemical Engineering, 2024, 73(9): 202-211. |
[6] | Zhenguang Liu, Zexiang Ding, Yifeng Cao, Baojian Liu, Qiwei Yang, Zhiguo Zhang, Qilong Ren, Zongbi Bao. Temperature-dependent solubility of Rebaudioside A in methanol/ethanol and ethyl acetate mixtures: Experimental measurements and thermodynamic modeling [J]. Chinese Journal of Chemical Engineering, 2024, 72(8): 164-176. |
[7] | Shun Guo, Yunfei Li, Shengwei Tang, Tao Zhang. The nitrogen transformation behavior based on the pyrolysis products of wheat straw [J]. Chinese Journal of Chemical Engineering, 2024, 71(7): 58-65. |
[8] | Bingning Wang, Xianzhe Wang, Song Yang, Chao Yang, Huiling Fan, Ju Shangguan. Research progress on catalysts for organic sulfur hydrolysis: Review of activity and stability [J]. Chinese Journal of Chemical Engineering, 2024, 71(7): 203-216. |
[9] | Pengxing Yuan, Xiude Hu, Jingjing Ma, Tuo Guo, Qingjie Guo. Thermogravimetric characteristics of corn straw and bituminous coal copyrolysis based the ilmenite oxygen carriers [J]. Chinese Journal of Chemical Engineering, 2024, 68(4): 8-15. |
[10] | Qing Liu, Tinghao Jia, Lun Pan, Jijun Zou, Xiangwen Zhang. Relationship between hydrogenation degree and pyrolysis performance of jet fuel [J]. Chinese Journal of Chemical Engineering, 2024, 68(4): 35-42. |
[11] | Congjing Ren, Peng Zhang, Qi Song, Zhengliang Huang, Yao Yang, Yongrong Yang. Particle agglomeration and inhibition method in the fluidized pyrolysis reaction of waste resin [J]. Chinese Journal of Chemical Engineering, 2024, 67(3): 135-147. |
[12] | Zhihao Guo, Jiuxuan Zhang, Lanlan Chen, Chaoqun Fan, Hong Jiang, Rizhi Chen. Hollow ZIF-67-derived Co@N-doped carbon nanotubes boosting the hydrogenation of phenolic compounds to alcohols [J]. Chinese Journal of Chemical Engineering, 2024, 66(2): 157-166. |
[13] | Wenchang Wu, Kefan Yu, Liang Zhao, Hui Dong. Computational fluid dynamics modeling of rapid pyrolysis of solid waste magnesium nitrate hydrate under different injection methods [J]. Chinese Journal of Chemical Engineering, 2024, 66(2): 224-237. |
[14] | Yao Li, Yuchun Zhang, Zhiyu Li, Huiyan Zhang, Peng Fu. Reaction pathways and selectivity in the chemo-catalytic conversion of cellulose and its derivatives to ethylene glycol: A review [J]. Chinese Journal of Chemical Engineering, 2024, 66(2): 310-331. |
[15] | Xiaoping Su, Zhao Wang, Ning Li, Longjian Li, Ping Zhang, Ming Sun, Xiaoxun Ma. Study on coal pyrolysis characteristics by combining different pyrolysis reactors [J]. Chinese Journal of Chemical Engineering, 2024, 76(12): 1-9. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 383
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 33
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||