[1] Y.J. Su, K. Zhou, Y.C. Yuan, W.W. Liu, Y.L. Deng, Study on prediction of binder distribution in the drying process of the coated web of positive electrode for lithium ion battery, IOP Conf. Ser.: Mater. Sci. Eng. 793 (1) (2020) 012025. [2] W.W. Zhu, J. Zhang, Y.F. Liu, Y.S. Wu, X.H. Wang, H.B. Hu. Introduction of binders for advanced lithium-ion batteries, Zhejiang Chemical Industry 51 (2020) 26-32. (in Chinese). [3] H.M. Wang, B.Z. Wu, F. Jiang, C.L. Li, Experimental study on distillation and purification of reclaimed NMP, J. Phys.: Conf. Ser. 2393 (1) (2022) 012022. [4] Z.L. Xiao, B.L. Yin, L.B. Song, Y.J. Kuang, T.T. Zhao, C. Liu, R.Y. Yuan, Research progress of waste lithium-ion battery recycling process and its safety risk analysis, CIESC Journal 74 (2023) 1446-1456. (in Chinese). [5] S. Ahmed, P.A. Nelson, K.G. Gallagher, D.W. Dees, Energy impact of cathode drying and solvent recovery during lithium-ion battery manufacturing, J. Power Sources 322 (2016) 169-178. [6] J.D. Di, G.S. Li, X.Z. Zheng, H.X. Wang, Review of recycling technology of NMP coating for lithium battery positive electrode, Guangdong Chemical Industry 47 (2020) 112-114. (in Chinese). [7] H. Wang, K. Xie, L.Y. Wang, Y. Han, N-methyl-2-pyrrolidone as a solvent for the non-aqueous electrolyte of rechargeable Li-air batteries, J. Power Sources 219 (2012) 263-271. [8] R. Sliz, J. Valikangas, H. Silva Santos, P. Vilmi, L. Rieppo, T. Hu, U. Lassi, T. Fabritius, Suitable cathode NMP replacement for efficient sustainable printed Li-ion batteries, ACS Appl. Energy Mater. 5 (4) (2022) 4047-4058. [9] B.F. Li, B. Qi, Z.Y. Guo, D.X. Wang, T.F. Jiao, Recent developments in the application of membrane separation technology and its challenges in oil-water separation: A review, Chemosphere 327 (2023) 138528. [10] Y. Zhuang, Z.H. Si, S.Y. Pang, H.Z. Wu, X.M. Zhang, P.Y. Qin, Recent progress in pervaporation membranes for furfural recovery: A mini review, J. Clean. Prod. 396 (2023) 136481. [11] M.B. Elsheniti, A. Ibrahim, O. Elsamni, M. Elewa, Experimental and economic investigation of sweeping gas membrane distillation/pervaporation modules using novel pilot scale device, Sep. Purif. Technol. 310 (2023) 123165. [12] B.H. Niu, L. Yang, S.J. Meng, D.W. Liang, H.J. Liu, L.Y. Yang, L. Shen, Q. Zhao, Time-dependent analysis of polysaccharide fouling by hermia models: Reveal the structure of fouling layer, Sep. Purif. Technol. 302 (2022) 122093. [13] S.N. Wang, Z. Huang, J.T. Wang, X.F. Ru, L.J. Teng, PVA/UiO-66 mixed matrix membranes for n-butanol dehydration via pervaporation and effect of ethanol, Sep. Purif. Technol. 313 (2023) 123487. [14] X.T. Lu, J.C. Huang, M. Pinelo, G.Q. Chen, Y.H. Wan, J.Q. Luo, Modelling and optimization of pervaporation membrane modules: A critical review, J. Membr. Sci. 664 (2022) 121084. [15] E.T. Saw, K.L. Ang, W. He, X.C. Dong, S. Ramakrishna, Molecular sieve ceramic pervaporation membranes in solvent recovery: A comprehensive review, J. Environ. Chem. Eng. 7 (5) (2019) 103367. [16] X. Xu, D. Nikolaeva, Y. Hartanto, P. Luis, MOF-based membranes for pervaporation, Sep. Purif. Technol. 278 (2021) 119233. [17] X.T. Cao, K.A. Wang, X.S. Feng, Removal of phenolic contaminants from water by pervaporation, J. Membr. Sci. 623 (2021) 119043. [18] S.K. Kang, J.W. Park, E. Tsegay Tikue, H.X. Zhang, S. Yang, P.S. Lee, Self-cross-linking nanocomposite membranes for green recycling of the solvent during lithium-ion battery manufacturing, ACS Sustainable Chem. Eng. 10 (2) (2022) 899-910. [19] R. Khan, I. Ul Haq, H. Mao, A.S. Zhang, L.H. Xu, H.G. Zhen, Z.P. Zhao, Enhancing the pervaporation performance of PEBA/PVDF membrane by incorporating MAF-6 for the separation of phenol from its aqueous solution, Sep. Purif. Technol. 256 (2021) 117804. [20] H. Mao, S.H. Li, A.S. Zhang, L.H. Xu, H.X. Lu, J. Lv, Z.P. Zhao, Furfural separation from aqueous solution by pervaporation membrane mixed with metal organic framework MIL-53(Al) synthesized via high efficiency solvent-controlled microwave, Sep. Purif. Technol. 272 (2021) 118813. [21] G.P. Liu, W.Q. Jin, Pervaporation membrane materials: Recent trends and perspectives, J. Membr. Sci. 636 (2021) 119557. [22] D.L. Wood, J.L. Li, C. Daniel, Prospects for reducing the processing cost of lithium ion batteries, J. Power Sources 275 (2015) 234-242. [23] U.K. Ghosh, N.C. Pradhan, B. Adhikari, Pervaporative recovery of N-methyl-2-pyrrolidone from dilute aqueous solution by using polyurethaneurea membranes, J. Membr. Sci. 285 (1-2) (2006) 249-257. [24] F.F. Shao, C.Q. Hao, L. Ni, Y.F. Zhang, R.H. Du, J.Q. Meng, Z. Liu, C.F. Xiao, Experimental and theoretical research on N-methyl-2-pyrrolidone concentration by vacuum membrane distillation using polypropylene hollow fiber membrane, J. Membr. Sci. 452 (2014) 157-164. [25] H.A. Tsai, Y.L. Chen, K.R. Lee, J.Y. Lai, Preparation of heat-treated PAN hollow fiber membranes for pervaporation of NMP/H2O mixtures, Sep. Purif. Technol. 100 (2012) 97-105. [26] K. Sunitha, K. Yamuna Rani, S. Moulik, S.V. Satyanarayana, S. Sridhar, Separation of NMP/water mixtures by nanocomposite PEBA membrane: Part I. membrane synthesis, characterization and pervaporation performance, Desalination 330 (2013) 1-8. [27] H.M. van Veen, M.D.A. Rietkerk, D.P. Shanahan, M.M.A. van Tuel, R. Kreiter, H.L. Castricum, J.E. ten Elshof, J.F. Vente, Pushing membrane stability boundaries with HybSi® pervaporation membranes, J. Membr. Sci. 380 (1-2) (2011) 124-131. [28] K. Sato, K. Sugimoto, N. Shimotsuma, T. Kikuchi, T. Kyotani, T. Kurata, Development of practically available up-scaled high-silica CHA-type zeolite membranes for industrial purpose in dehydration of N-methyl pyrrolidone solution, J. Membr. Sci. 409 (2012) 82-95. [29] N.S. Prasad, S. Moulik, S. Bohra, K.Y. Rani, S. Sridhar, Solvent resistant chitosan/poly(ether-block-amide) composite membranes for pervaporation of n-methyl-2-pyrrolidone/water mixtures, Carbohydr. Polym. 136 (2016) 1170-1181. [30] X.H. Gu, N.P. Xu, Study of zeolite membranes for pervaporation dehydration and their applications, Eng. Sci. 16 (12) (2014) 52-58. [31] X.H. Gu, C. Zhong, Z. Hong, L Yang, Method and device for recovering NMP (N-methyl pyrrolidone) waste gas in lithium battery production with membrane separation method, CN Pat., 107626186A, 2019. [32] W.H. Zeng, B.B. Li, H. Li, W. Li, H. Jin, Y.S. Li, Mass produced NaA zeolite membranes for pervaporative recycling of spent N-Methyl-2-Pyrrolidone in the manufacturing process for lithium-ion battery, Sep. Purif. Technol. 228 (2019) 115741. [33] S.Y. Guo, C.L. Yu, X.H. Gu, W.Q. Jin, J. Zhong, C.L. Chen, Simulation of adsorption, diffusion, and permeability of water and ethanol in NaA zeolite membranes, J. Membr. Sci. 376 (1-2) (2011) 40-49. [34] Y.Y. Lu, Y.H. Luan, J.H. Yang, Study on water content of MMA adsorbed by 4A molecular sieve, China Plast. Ind. 39 (7) (2011) 76-78, 110. [35] X.X. Hao, H.X. Li, Effects of water on structure and adsorption performance of molecular sieve, Material Science and Technology 25 (2017) 13-18. (in Chinese). [36] X.C. Fan, X.H. Yu, G.X. Zou, Y.G. Hao, Z.L. Luo, Study on adsorption kinetics of molecular sieves of ethyl acetate dehydration, Applied Chemical Industry 49 (2020) 1187-1190. (in Chinese). [37] Hendriyana, B.H. Prabowo, L. Nurdini, G. Trilaksono, Adsorption of water from methanol solution using various adsorbent, AIP Conf. Proc., In: Proceedings of the 3rd international symposium on applied chemistry, Jakarta, Indonesia, 2017. [38] Z.X. Zhang, Q.L. Gu, T.C.A. Ng, J. Zhang, X.Y. Zhang, L. Zhang, X.R. Zhang, H. Wang, H.Y. Ng, J. Wang, Hierarchically porous interlayer for highly permeable and fouling-resistant ceramic membranes in water treatment, Sep. Purif. Technol. 293 (2022) 121092. [39] S. Liu, G.Y. Zhou, G.B. Cheng, X.K. Wang, G.P. Liu, W.Q. Jin, Emerging membranes for separation of organic solvent mixtures by pervaporation or vapor permeation, Sep. Purif. Technol. 299 (2022) 121729. [40] Y.B. Peng, X. Wei, Y.J. Wang, W.W. Li, S.X. Zhang, J. Jin, Metal-organic framework composite photothermal membrane for removal of high-concentration volatile organic compounds from water via molecular sieving, ACS Nano 16 (5) (2022) 8329-8337. [41] Y. Jin, Study on adsorption of water from 2-methyltetrahydrofuran by molecular sieve, Master Thesis, Taiyuan University of Technology, 2019. (in Chinese). [42] Q.C. Yang, S. Zhu, Q. Yang, W.Q. Huang, P.J. Yu, D.W. Zhang, Z.B. Wang, Comparative techno-economic analysis of oil-based and coal-based ethylene glycol processes, Energy Convers. Manag. 198 (2019) 111814. [43] H. Huang, R.C. Samsun, R. Peters, D. Stolten, Greener production of dimethyl carbonate by the power-to-fuel concept: A comparative techno-economic analysis, Green Chem. 23 (4) (2021) 1734-1747. [44] Q.C. Yang, Z. Zhang, Y.J. Fan, G.Y. Chu, D.W. Zhang, J.H. Yu, Advanced exergy analysis and optimization of a CO2 to methanol process based on rigorous modeling and simulation, Fuel 325 (2022) 124944. [45] M.A. Adnan, M.G. Kibria, Comparative techno-economic and life-cycle assessment of power-to-methanol synthesis pathways, Appl. Energy 278 (2020) 115614. |