[1] Y.L. Han, M. Gholizadeh, C.C. Tran, S. Kaliaguine, C.Z. Li, M. Olarte, M. Garcia-Perez, Hydrotreatment of pyrolysis bio-oil: a review, Fuel Process. Technol. 195 (2019) 106140. [2] M.Y. Zhang, Y.L. Hu, H.Y. Wang, H.Y. Li, X. Han, Y.M. Zeng, C.C. Xu, A review of bio-oil upgrading by catalytic hydrotreatment: advances, challenges, and prospects, Mol. Catal. 504 (2021) 111438. [3] H.B. Jiang, X.G. Sun, H.L. Lv, W.B. Chen, K. Qin, M.F. Li, H. Nie, Hydrodenitrogenation kinetics of diesel oil and catalyst stacking simulation, Energy Fuels 35 (4) (2021) 3283-3294. [4] Y.C. Yin, W.B. Chen, G.L. Wu, F. Xin, K. Qin, Y.T. Lu, L. Zhang, M.F. Li, Kinetics toward mechanism and real operation for ultra-deep hydrodesulfurization and hydrodenitrogenation of diesel, AlChE. J. 67 (7) (2021) e17188. [5] G.L. Wu, Y.C. Yin, W.B. Chen, F. Xin, Y.T. Lu, K. Qin, L. Zhang, Y.X. Song, M.F. Li, Catalytic kinetics for ultra-deep hydrodesulfurization of diesel, Chem. Eng. Sci. 214 (2020) 115446. [6] P.V. Aleksandrov, S.I. Reshetnikov, G.A. Bukhtiyarova, A.S. Noskov, Deep hydrodesulfurization of gas oils with high sulfur content: experiment and kinetic modeling, Chem. Eng. J. 446 (2022) 137059. [7] L. da Rocha Novaes, N.S. de Resende, V.M.M. Salim, A.R. Secchi, Modeling, simulation and kinetic parameter estimation for diesel hydrotreating, Fuel 209 (2017) 184-193. [8] M. Bhaskar, G. Valavarasu, B. Sairam, K.S. Balaraman, K. Balu, Three-phase reactor model to simulate the performance of pilot-plant and industrial trickle-bed reactors sustaining hydrotreating reactions, Ind. Eng. Chem. Res. 43 (21) (2004) 6654-6669. [9] H. Korsten, U. Hoffmann, Three-phase reactor model for hydrotreating in pilot trickle-bed reactors, AlChE. J. 42 (5) (1996) 1350-1360. [10] M.H. Al-Dahhan, M.P. Dudukovic, Catalyst wetting efficiency in trickle-bed reactors at high pressure, Chem. Eng. Sci. 50 (15) (1995) 2377-2389. [11] J.W. Chen, N. Wang, F. Mederos, J. Ancheyta, Vapor-liquid equilibrium study in trickle-bed reactors, Ind. Eng. Chem. Res. 48 (3) (2009) 1096-1106. [12] R. Bandyopadhyay, S. Upadhyayula, Thermodynamic analysis of diesel hydrotreating reactions, Fuel 214 (2018) 314-321. [13] L.M. Chavez, F. Alonso, J. Ancheyta, Vapor-liquid equilibrium of hydrogen-hydrocarbon systems and its effects on hydroprocessing reactors, Fuel 138 (2014) 156-175. [14] M. Mapiour, V. Sundaramurthy, A.K. Dalai, J. Adjaye, Effects of the operating variables on hydrotreating of heavy gas oil: experimental, modeling, and kinetic studies, Fuel 89 (9) (2010) 2536-2543. [15] A. Dimitriadis, S. Bezergianni, Co-hydroprocessing gas-oil with residual lipids: effect of residence time and H2/oil ratio, J. Clean. Prod. 131 (2016) 321-326. [16] A.R. Beltramone, D.E. Resasco, W.E. Alvarez, T.V. Choudhary, Simultaneous hydrogenation of multiring aromatic compounds over NiMo catalyst, Ind. Eng. Chem. Res. 47 (19) (2008) 7161-7166. [17] D. Lasic Jurkovic, A. Kostyniuk, B. Likozar, Mechanisms, reaction micro-kinetics and modelling of hydrocracking of aromatic biomass tar model compounds into benzene, toluene and xylenes (BTX) over H-ZSM-5 catalyst, Chem. Eng. J. 445 (2022) 136898. [18] B. Hocevar, M. Grilc, M. Hus, B. Likozar, Mechanism, ab initio calculations and microkinetics of straight-chain alcohol, ether, ester, aldehyde and carboxylic acid hydrodeoxygenation over Ni-Mo catalyst, Chem. Eng. J. 359 (2019) 1339-1351. [19] M. Grilc, B. Likozar, J. Levec, Hydrotreatment of solvolytically liquefied lignocellulosic biomass over NiMo/Al2O3 catalyst: reaction mechanism, hydrodeoxygenation kinetics and mass transfer model based on FTIR, Biomass Bioenergy 63 (2014) 300-312. [20] A. Kostyniuk, D. Bajec, B. Likozar, Catalytic hydrocracking reactions of tetralin biomass tar model compound to benzene, toluene and xylenes (BTX) over metal-modified ZSM-5 in ambient pressure reactor, Renew. Energy 188 (2022) 240-255. [21] M. Grilc, B. Likozar, J. Levec, Kinetic model of homogeneous lignocellulosic biomass solvolysis in glycerol and imidazolium-based ionic liquids with subsequent heterogeneous hydrodeoxygenation over NiMo/Al2O3 catalyst, Catal. Today 256 (2015) 302-314. [22] G. de Souza Guedes Junior, I. Gigante Nascimento, M. Ahmad, C. Killeen, J.A. Boscoboinik, J. Trelewicz, J.C. Pinto, M. Dorneles de Mello, M. Antunes Pereira da Silva, Kinetics of simultaneous hydrodesulfurization and hydrodenitrogenation reactions using CoMoP/Al2O3 and NiMoP/Al2O3, Chem. Eng. Sci., 275 (2023) 118725. [23] D. Chehadeh, X.L. Ma, H. Al Bazzaz, Recent progress in hydrotreating kinetics and modeling of heavy oil and residue: a review, Fuel 334 (2023) 126404. [24] E. Galand, F. Caron, E. Girard, A. Daudin, M. Rivallan, P. Raybaud, J.M. Schweitzer, Y. Schuurman, High-throughput experimentation based kinetic modeling of selective hydrodesulfurization of gasoline model molecules catalyzed by CoMoS/Al2O3, Catal. Sci. Technol. 13 (6) (2023) 1777-1787. [25] I.G. Nascimento, W. de R. Locatel, B.C. Magalhaes, L. Travalloni, J.L. Zotin, M.A.P. da Silva, Kinetics of dibenzothiophene hydrodesulfurization reactions using CoMoP/Al2O3 and NiMoP/Al2O3, Catal. Today 381 (2021) 200-208. [26] F.S. Mederos, J. Ancheyta, J.W. Chen, Review on criteria to ensure ideal behaviors in trickle-bed reactors, Appl. Catal. A Gen. 355 (1-2) (2009) 1-19. [27] J. Ancheyta, A. Alvarez-Majmutov, C. Leyva, Hydrotreating of oil fractions, In book: Multiphase Catalytic Reactors,Wiley, 2016. [28] J.J. Rios, E. Leal, F. Trejo, J. Ancheyta, Kinetic models of deep hydrotreating reactions to produce ultralow sulfur diesel, Energy Fuels 37 (15) (2023) 11216-11247. [29] W.M. Haynes, CRC Handbook of Chemistry and Physics, 93rd ed. CRC Press, Boca Raton, FL,USA, 2016. [30] H.B. Yang, Y.C. Wang, H.B. Jiang, H.X. Weng, F. Liu, M.F. Li, Kinetics of phenanthrene hydrogenation system over CoMo/Al2O3 catalyst, Ind. Eng. Chem. Res. 53 (31) (2014) 12264-12269. [31] H.H. Pham, K.H. Kim, K.S. Go, N.S. Nho, W. Kim, E.H. Kwon, R.H. Jung, Y.I. Lim, S.H. Lim, D.A. Pham, Hydrocracking and hydrotreating reaction kinetics of heavy oil in CSTR using a dispersed catalyst, J. Petrol. Sci. Eng. 197 (2021) 107997. [32] C. Peng, P. Liu, Z.M. Zhou, X.C. Fang, Y.X. Pan, Detailed understanding on thermodynamic and kinetic features of phenanthrene hydroprocessing on Ni-Mo/HY catalyst, AlChE. J. 68 (11) (2022) e17831. [33] H.M. Sebastian, J.J. Simnick, H.M. Lin, K.C. Chao, Gas-liquid equilibrium in the hydrogen + n-decane system at elevated temperatures and pressures, J. Chem. Eng. Data 25 (1) (1980) 68-70. [34] F. Cazana, M.T. Jimare, E. Romeo, V. Sebastian, S. Irusta, N. Latorre, C. Royo, A. Monzon, Kinetics of liquid phase cyclohexene hydrogenation on Pd-Al/biomorphic carbon catalysts, Catal. Today 249 (2015) 127-136. [35] M. Yang, R.M. Rioux, G.A. Somorjai, Reaction kinetics and in situ sum frequency generation surface vibrational spectroscopy studies of cycloalkene hydrogenation/dehydrogenation on Pt(111): substituent effects and CO poisoning, J. Catal. 237 (2) (2006) 255-266. [36] R.M. Rioux, B.B. Hsu, M.E. Grass, H. Song, G.A. Somorjai, Influence of particle size on reaction selectivity in cyclohexene hydrogenation and dehydrogenation over silica-supported monodisperse Pt particles, Catal. Lett. 126 (1) (2008) 10-19. [37] V. Samano, A. Tirado, G. Felix, J. Ancheyta, Revisiting the importance of appropriate parameter estimation based on sensitivity analysis for developing kinetic models, Fuel 267 (2020) 117113. [38] L.A. Alcazar, J. Ancheyta, Sensitivity analysis based methodology to estimate the best set of parameters for heterogeneous kinetic models, Chem. Eng. J. 128 (2-3) (2007) 85-93. [39] M.K. Sabbe, G. Canduela-Rodriguez, J.F. Joly, M.F. Reyniers, G.B. Marin, Ab initio coverage-dependent microkinetic modeling of benzene hydrogenation on Pd(111), Catal. Sci. Technol. 7 (22) (2017) 5267-5283. [40] M.K. Sabbe, G. Canduela-Rodriguez, M.F. Reyniers, G.B. Marin, DFT-based modeling of benzene hydrogenation on Pt at industrially relevant coverage, J. Catal. 330 (2015) 406-422. [41] P.A. Rautanen, M.S. Lylykangas, J.R. Aittamaa, A.O.I. Krause, Liquid-phase hydrogenation of naphthalene and tetralin on Ni/Al2O3: kinetic modeling, Ind. Eng. Chem. Res. 41 (24) (2002) 5966-5975. [42] C. Peng, Z.M. Zhou, X.C. Fang, H.L. Wang, Thermodynamics and kinetics insights into naphthalene hydrogenation over a Ni-Mo catalyst, Chin. J. Chem. Eng. 39 (2021) 173-182. [43] M.S. Lylykangas, P.A. Rautanen, A.O.I. Krause, Liquid-phase hydrogenation kinetics of multicomponent aromatic mixtures on Ni/Al2O3, Ind. Eng. Chem. Res. 41 (23) (2002) 5632-5639. [44] E. Morales-Valencia, C.O. Castillo-Araiza, S.A. Giraldo, V.G. Baldovino-Medrano, Kinetic assessment of the simultaneous hydrodesulfurization of dibenzothiophene and the hydrogenation of diverse polyaromatic structures, ACS Catal. 8 (5) (2018) 3926-3942. [45] Y.Z. Liu, Y. Luo, G.W. Chu, W. Liu, L. Shao, J.F. Chen, Liquid holdup and wetting efficiency in a rotating trickle-bed reactor, AlChE. J. 65 (8) (2019) e16618. [46] Z.K. Cao, X. Zhang, C.M. Xu, A.J. Duan, R. Guo, Z. Zhao, Z.M. Wu, C. Peng, J.M. Li, X.L. Wang, Q. Meng, The synthesis of Al-SBA-16 materials with a novel method and their catalytic application on hydrogenation for FCC diesel, Energy Fuels 31 (1) (2017) 805-814. [47] M.R. Nimkarde, P.D. Vaidya, Toward diesel production from karanja oil hydrotreating over CoMo and NiMo catalysts, Energy Fuels 30 (4) (2016) 3107-3112. [48] I. Hita, A.T. Aguayo, M. Olazar, M.J. Azkoiti, J. Bilbao, J.M. Arandes, P. Castano, Kinetic modeling of the hydrotreating and hydrocracking stages for upgrading scrap tires pyrolysis oil (STPO) toward high-quality fuels, Energy Fuels 29 (11) (2015) 7542-7553. |