[1] Y.F. Makogon, Natural gas hydrates-A promising source of energy, J. Nat. Gas Sci. Eng. 2 (1) (2010) 49-59. [2] A.Y. Manakov, A.S. Stoporev, Physical chemistry and technological applications of gas hydrates: Topical aspects, Russ. Chem. Rev. 90 (5) (2021) 566-600. [3] A. Hassanpouryouzband, E. Joonaki, M.V. Farahani, S. Takeya, C. Ruppel, J.H. Yang, N.J. English, J.M. Schicks, K. Edlmann, H. Mehrabian, Z.M. Aman, B. Tohidi, Gas hydrates in sustainable chemistry, Chem. Soc. Rev. 49 (15) (2020) 5225-5309. [4] G.J. Moridis, T.S. Collett, R. Boswell, S. Hancock, J. Rutqvist, C. Santamarina, T. Kneafsey, M.T. Reagan, M. Pooladi-Darvish, M. Kowalsky, E.D. Sloan, C. Coh, Gas hydrates as a potential energy source: State of knowledge and challenges. Advanced Biofuels and Bioproducts. Springer New York, (2012), pp 77-1033. [5] E.D. Sloan, Hydrate Engineering. B, Bloys (Ed.) SPE Monograph Series, 2000. [6] J.A. Ripmeester, S. Alavi, Clathrate hydrate: Molecular Science and Characterization. Wiley-VCH. 2022. [7] H. Ritchie, P. Rosado, M. Roser, CO2 and green house gas emission, https://ourworldindata.org/co2-and-greenhouse-gas-emissions, acsessed 28 May 2024. [8] B. Dziejarski, J. Serafin, K. Andersson, R. Krzyzynska, CO2 capture materials: A review of current trends and future challenges, Mater. Today Sustain. 24 (2023) 100483. [9] A. Dubey, A. Arora, Advancements in carbon capture technologies: A review, J. Clean. Prod. 373 (2022) 133932. [10] H. Yamada, Amine-based capture of CO2 for utilization and storage, Polym. J. 53 (2021) 93-102. [11] G.T. Mwenketishi, H. Benkreira, N. Rahmanian, A comprehensive review on carbon dioxide sequestration methods, Energies 16 (24) (2023) 7971. [12] S.J. A., H. Yoshida, M. Sakai, T. Tanii, T. Kamata, H. Kitamura, Fixation of carbon dioxide by clathrate-hydrate, Energy Convers. Manag. 33 (5-8) (1992) 643-649. [13] K. Ohgaki, Y. Makihara, K. Takano, Formation of CO2 hydrate in pure and sea waters, J. Chem. Eng. Japan / JCEJ 26 (5) (1993) 558-564. [14] H.J. Ng, D.B. Robinson, Hydrate formation in systems containing methane, ethane, propane, carbon dioxide or hydrogen sulfide in the presence of methanol, Fluid Phase Equilib. 21 (1-2) (1985) 145-155. [15] P.D. Dholabhai, N. Kalogerakis, P.R. Bishnoi, Equilibrium conditions for carbon dioxide hydrate formation in aqueous electrolyte solutions, J. Chem. Eng. Data 38 (4) (1993) 650-654. [16] M. Wendland, H. Hasse, G. Maurer, Experimental pressure-temperature data on three- and four-phase equilibria of fluid, hydrate, and ice phases in the system carbon dioxide-water, J. Chem. Eng. Data 44 (5) (1999) 901-906. [17] S.S. Fan, G.J. Chen, Q.L. Ma, T.M. Guo, Experimental and modeling studies on the hydrate formation of CO2 and CO2-rich gas mixtures, Chem. Eng. J. 78 (2-3) (2000) 173-178. [18] C.H. Unruh, D.L. Katz, Gas hydrates of carbon dioxide-methane mixtures, J. Petrol. Technol. 1 (4) (1949) 83-86. [19] Y.T. Seo, H.E. Lee, J.H. Yoon, Hydrate phase equilibria of the carbon dioxide, methane, and water system, J. Chem. Eng. Data 46 (2) (2001) 381-384. [20] S. Adisasmito, E.D. Sloan Jr, Hydrates of hydrocarbon gases containing carbon dioxide, J. Chem. Eng. Data 37 (3) (1992) 343-349. [21] E.D. Sloan, C.A. Koh, Clathrate hydrates of natural gases, third edition, CRC Press, Boca Rator - London - New-York, 2008. [22] S. Circone, L.A. Stern, S.H. Kirby, W.B. Durham, B.C. Chakoumakos, C.J. Rawn, A.J. Rondinone, Y. Ishii, CO2 hydrate: Synthesis, composition, structure, dissociation behavior, and a comparison to structure I CH4 hydrate, J. Phys. Chem. B 107 (23) (2003) 5529-5539. [23] P.G. Brewer, G. Friederich, E.T. Peltzer, F.M. Orr Jr, Direct experiments on the ocean disposal of fossil fuel CO2, Science 284 (5416) (1999) 943-945. [24] V. Dhamu, M.F. Qureshi, T.A. Barckholtz, A.B. Mhadeshwar, P. Linga, Evaluating liquid CO2 hydrate formation kinetics, morphology, and stability in oceanic sediments on a lab scale using top injection, Chem. Eng. J. 478 (2023) 147200. [25] M.F. Qureshi, H. Khandelwal, A. Usadi, T.A. Barckholtz, A.B. Mhadeshwar, P. Linga, CO2 hydrate stability in oceanic sediments under brine conditions, Energy 256 (2022) 124625. [26] T. Uchida, T. Ebinuma, J. Kawabata, H. Narita, Microscopic observations of formation processes of clathrate-hydrate films at an interface between water and carbon dioxide, J. Cryst. Growth 204 (3) (1999) 348-356. [27] Y. Abe, X. Ma, T. Yanai, K. Yamane, Development of formation and growth models of CO2 hydrate film, AlChE. J. 62 (11) (2016) 4078-4089. [28] A. Boufares, E. Provost, D. Dalmazzone, V. Osswald, P. Clain, A. Delahaye, L. Fournaison, Kinetic study of CO2 hydrates crystallization: Characterization using FTIR/ATR spectroscopy and contribution modeling of equilibrium/non-equilibrium phase-behavior, Chem. Eng. Sci. 192 (2018) 371-379. [29] T.P. Adamova, S.S. Skiba, A.Y. Manakov, S.Y. Misyura, Growth rate of CO2 hydrate film on water-oil and water-gaseous CO2 interface, Chin. J. Chem. Eng. 56 (2023) 266-272. [30] Y.C. Zhao, X. Lei, J.N. Zheng, M. Li, M.L. Johns, M.X. Huang, Y.C. Song, High resolution MRI studies of CO2 hydrate formation and dissociation near the gas-water interface, Chem. Eng. J. 425 (2021) 131426. [31] S. Oya, M. Aifaa, R. Ohmura, Formation, growth and sintering of CO2 hydrate crystals in liquid water with continuous CO2 supply: Implication for subsurface CO2 sequestration, Int. J. Greenh. Gas Contr. 63 (2017) 386-391. [32] N.S. Molokitina, A.N. Nesterov, L.S. Podenko, A.M. Reshetnikov, Carbon dioxide hydrate formation with SDS: Further insights into mechanism of gas hydrate growth in the presence of surfactant, Fuel 235 (2019) 1400-1411. [33] Y.M. Kuang, X. Lei, L. Yang, Y.C. Zhao, J.F. Zhao, Observation of In situ growth and decomposition of carbon dioxide hydrate at gas-water interfaces using magnetic resonance imaging, Energy Fuels 32 (6) (2018) 6964-6969. [34] H. Khandelwal, M.F. Qureshi, J.J. Zheng, P. Venkataraman, T.A. Barckholtz, A.B. Mhadeshwar, P. Linga, Effect of L-tryptophan in promoting the kinetics of carbon dioxide hydrate formation, Energy Fuels 35 (1) (2021) 649-658. [35] V. Dhamu, M.F. Qureshi, S. Abubakar, A. Usadi, T.A. Barckholtz, A.B. Mhadeshwar, P. Linga, Investigating high-pressure liquid CO2 hydrate formation, dissociation kinetics, and morphology in brine and freshwater static systems, Energy Fuels 37 (12) (2023) 8406-8420. [36] S.E. Gainullin, P.Y. Kazakova, R.S. Pavelyev, Y.F. Chirkova, M.E. Semenov, M.A. Varfolomeev, Comparison of the promoting activity of amides of ethylenediaminetetraacetic acid and some amino acids in the nucleation and growth of hydrates of methane and carbon dioxide, Chem. Technol. Fuels Oils 59 (4) (2023) 726-731. [37] S.E. Gainullin, A. Farhadian, P.Y. Kazakova, M.E. Semenov, Y.F. Chirkova, A. Heydari, R.S. Pavelyev, M.A. Varfolomeev, Novel amino acid derivatives for efficient methane solidification storage via clathrate hydrates without foam formation, Energy Fuels 37 (4) (2023) 3208-3217. [38] A. Sagidullin, S. Skiba, T. Adamova, A. Stoporev, D. Strukov, S. Kartopol’cev, A. Manakov, Humic acids as a new type of methane hydrate formation promoter and a possible mechanism for the hydrate growth enhancement, ACS Sustainable Chem. Eng. 10 (1) (2022) 521-529. [39] T. Uchida, J. Kawabata, Measurements of Mechanical Properties of the Liquid CO2-Water-CO2-Hydrate System. Energy, 22 (2-3) (1997) 357-361. [40] Z.J. He, F.L. Ning, F.Y. Mi, B. Fang, G.S. Jiang, Molecular dynamics study on the spontaneous adsorption of aromatic carboxylic acids to methane hydrate surfaces: implications for hydrate antiagglomeration, Energy Fuels 36 (7) (2022) 3628-3639. [41] T.P. Adamova, A.S. Stoporev, A.Y. Manakov, Visual Studies of Methane Hydrate Formation on the Water-Oil Boundaries. Cryst.Growth Des., 18 (2018) 6713-6722. [42] T.S. Urazova, A.L. Bychkov, O.I. Lomovskii, Mechanochemical modification of the structure of brown coal humic acids for preparing a sorbent for heavy metals, Russ. J. Appl. Chem. 87 (5) (2014) 651-655. [43] A.K. Sagidullin, A.Y. Manakov, Growth features of gas hydrate films at interface of liquid carbon dioxide with water and sodium dodecyl sulfate solution in teflon and steel cuvettes, Chem. Technol. Fuels Oils 59 (4) (2023) 718-725. [44] S. Esmail, J.G. Beltran, Methane hydrate propagation on surfaces of varying wettability, J. Nat. Gas Sci. Eng. 35 (2016) 1535-1543. [45] H. Hayama, M. Mitarai, H. Mori, J. Verrett, P. Servio, R. Ohmura, Surfactant effects on crystal growth dynamics and crystal morphology of methane hydrate formed at gas/liquid interface, Cryst. Growth Des. 16 (10) (2016) 6084-6088. [46] T. Uchida, I.Y. Ikeda, S. Takeya, T. Ebinuma, J. Nagao, H. Narita, CO2 hydrate film formation at the boundary between CO2 and water: Effects of temperature, pressure and additives on the formation rate, J. Cryst. Growth 237 (2002) 383-387. [47] V.A. Vlasov, Diffusion-kinetic model of gas hydrate film growth along the gas-water interface, Heat Mass Transf. 55 (12) (2019) 3537-3545. [48] L.W. Diamond, N.N. Akinfiev, Solubility of CO2 in water from -1.5 to 100 ℃ and from 0.1 to 100 MPa: Evaluation of literature data and thermodynamic modelling, Fluid Phase Equilib. 208 (1-2) (2003) 265-290. [49] Q. Sun, H. Tian, X.Q. Guo, A.X. Liu, L.Y. Yang, Solubility of CO2 in water and NaCl solution in equilibrium with hydrate. Part II: Model calculation, Can. J. Chem. Eng. 96 (2) (2018) 620-624. [50] B. Meyssami, M.O. Balaban, A.A. Teixeira, Prediction of pH in model systems pressurized with carbon dioxide, Biotechnol. Prog. 8 (2) (1992) 149-154. [51] J.W. Parsons, Humus chemistry: genesis, composition, reactions, Soil Sci. 135 (2)129–130. [52] A. Chatterjee, S.P. Moulik, S.K. Sanyal, B.K. Mishra, P.M. Puri, Thermodynamics of micelle formation of ionic surfactants: A critical assessment for sodium dodecyl sulfate, cetyl pyridinium chloride and dioctyl sulfosuccinate (Na salt) by microcalorimetric, conductometric, and tensiometric measurements, J. Phys. Chem. B 105 (51) (2001) 12823-12831. [53] D.J. Turner, K.T. Miller, E. Dendy Sloan, Methane hydrate formation and an inward growing shell model in water-in-oil dispersions, Chem. Eng. Sci. 64 (18) (2009) 3996-4004. [54] D.X. Zhang, Q.Y. Huang, R.B. Li, W. Wang, X.R. Zhu, H.Y. Li, Y.J. Wang, Effects of waxes on hydrate behaviors in water-in-oil emulsions containing asphaltenes, Chem. Eng. Sci. 244 (2021) 116831. [55] M.C. Zi, G.Z. Wu, J. Wang, D.Y. Chen, Investigation of gas hydrate formation and inhibition in oil-water system containing model asphaltene, Chem. Eng. J. 412 (2021) 128452. [56] Y.X. Ning, M.H. Yao, Y.X. Li, G.C. Song, Z.M. Liu, Q.P. Li, H.Y. Yao, W.C. Wang, Integrated investigation on the nucleation and growing process of hydrate in W/O emulsion containing asphaltene, Chem. Eng. J. 454 (2023) 140389. [57] G.A.B. Sandoval, R.L. Thompson, C.M.S. Sad, A. Teixeira, E.J. Soares, Influence of adding asphaltenes and gas condensate on CO2 hydrate formation in water-CO2-oil systems, Energy Fuels 33 (8) (2019) 7138-7146. [58] D.X. Zhang, Q.Y. Huang, W. Wang, H.Y. Li, H.M. Zheng, R.B. Li, W.D. Li, W.M. Kong, Effects of waxes and asphaltenes on CO2 hydrate nucleation and decomposition in oil-dominated systems, J. Nat. Gas Sci. Eng. 88 (2021) 103799. [59] S. Liang, X.X. Li, C.N. Wang, X.Q. Guo, X. Jiang, Q.P. Li, G.J. Chen, C.Y. Sun, Effect of asphaltenes on growth behavior of methane hydrate film at the oil-water interface, Energy 288 (2024) 129734. |