Chinese Journal of Chemical Engineering ›› 2024, Vol. 76 ›› Issue (12): 281-291.DOI: 10.1016/j.cjche.2024.07.025
Previous Articles Next Articles
Tongming Su1, Bo Gong1, Xinling Xie1, Xuan Luo1, Zuzeng Qin1, Hongbing Ji1,2
Received:
2024-04-14
Revised:
2024-07-21
Accepted:
2024-07-22
Online:
2024-09-28
Published:
2024-12-28
Contact:
Zuzeng Qin,E-mail:qinzuzeng@gxu.edu.cn
Supported by:
Tongming Su1, Bo Gong1, Xinling Xie1, Xuan Luo1, Zuzeng Qin1, Hongbing Ji1,2
通讯作者:
Zuzeng Qin,E-mail:qinzuzeng@gxu.edu.cn
基金资助:
Tongming Su, Bo Gong, Xinling Xie, Xuan Luo, Zuzeng Qin, Hongbing Ji. Effect of cobalt on the activity of nickel-based/magnesium-substituted hydroxyapatite catalysts for dry reforming of methane[J]. Chinese Journal of Chemical Engineering, 2024, 76(12): 281-291.
Tongming Su, Bo Gong, Xinling Xie, Xuan Luo, Zuzeng Qin, Hongbing Ji. Effect of cobalt on the activity of nickel-based/magnesium-substituted hydroxyapatite catalysts for dry reforming of methane[J]. 中国化学工程学报, 2024, 76(12): 281-291.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2024.07.025
[1] A.G. Olabi, M. Ali Abdelkareem, Renewable energy and climate change, Renew. Sustain. Energy Rev. 158 (2022) 112111. [2] A. Munyentwali, H. Li, Q.H. Yang, Review of advances in bifunctional solid acid/base catalysts for sustainable biodiesel production, Appl. Catal. A Gen. 633 (2022) 118525. [3] C.W. Mao, Y.X. Chang, X.T. Zhao, X.Y. Dong, Y.F. Geng, N. Zhang, L. Dai, X.W. Wu, L. Wang, Z.X. He, Functional carbon materials for high-performance Zn metal anodes, J. Energy Chem. 75 (2022) 135-153. [4] E. Chamanehpour, M.H. Sayadi, M. Hajiani, A hierarchical graphitic carbon nitride supported by metal-organic framework and copper nanocomposite as a novel bifunctional catalyst with long-term stability for enhanced carbon dioxide photoreduction under solar light irradiation, Adv. Compos. Hybrid Mater. 5 (3) (2022) 2461-2477. [5] S.L. Hamukwaya, Z.Y. Zhao, H.Y. Hao, H.M. Abo-Dief, K.M. Abualnaja, A.K. Alanazi, M.M. Mashingaidze, S.M. El-Bahy, M.N. Huang, Z.H. Guo, Enhanced photocatalytic performance for hydrogen production and carbon dioxide reduction by a mesoporous single-crystal-like TiO2 composite catalyst, Adv. Compos. Hybrid Mater. 5 (3) (2022) 2620-2630. [6] J.Y. Wang, R. Fu, S.K. Wen, P. Ning, M.H. Helal, M.A. Salem, B.B. Xu, Z.M. El-Bahy, M.N. Huang, Z.H. Guo, L. Huang, Q. Wang, Progress and current challenges for CO2 capture materials from ambient air, Adv. Compos. Hybrid Mater. 5 (4) (2022) 2721-2759. [7] J.M. Shi, A.G. Wang, Y.L. An, S. Chen, C.Y. Bi, L.N. Qu, C. Shi, F.Y. Kang, C.F. Sun, Z.H. Huang, H.J. Qi, J.G. Hu, Core@shell-structured catalysts based on Mg-O-Cu bond for highly selective photoreduction of carbon dioxide to methane, Adv. Compos. Hybrid Mater. 7 (1) (2023) 2. [8] Q.L.M. Ha, H. Atia, C. Kreyenschulte, H. Lund, S. Bartling, G. Lisak, S. Wohlrab, U. Armbruster, Effects of modifier (Gd, Sc, La) addition on the stability of low Ni content catalyst for dry reforming of model biogas, Fuel 312 (2022) 122823. [9] Z.P. Zou, T. Zhang, L. Lv, W.X. Tang, G.Q. Zhang, R. Kumar Gupta, Y. Wang, S.W. Tang, Preparation adjacent Ni-Co bimetallic nano catalyst for dry reforming of methane, Fuel 343 (2023) 128013. [10] X.T. Cui, S.K. Kaer, A comparative study on three reactor types for methanol synthesis from syngas and CO2, Chem. Eng. J. 393 (2020) 124632. [11] J. Yang, W.P. Ma, D. Chen, A. Holmen, B.H. Davis, Fischer-Tropsch synthesis: A review of the effect of CO conversion on methane selectivity, Appl. Catal. A Gen. 470 (2014) 250-260. [12] Y.L. Huang, X.D. Li, Q. Zhang, V.A. Vinokurov, W. Huang, Enhanced carbon tolerance of hydrotalcite-derived Ni-Ir/Mg(Al)O catalysts in dry reforming of methane under elevated pressures, Fuel Process. Technol. 237 (2022) 107446. [13] T. Kobayashi, T. Furuya, H. Fujitsuka, T. Tago, Synthesis of Birdcage-type zeolite encapsulating ultrafine Pt nanoparticles and its application in dry reforming of methane, Chem. Eng. J. 377 (2019) 120203. [14] Z.Y. Liu, F. Zhang, N. Rui, X. Li, L.L. Lin, L.E. Betancourt, D. Su, W.Q. Xu, J.J. Cen, K. Attenkofer, H. Idriss, J.A. Rodriguez, S.D. Senanayake, Highly active ceria-supported Ru catalyst for the dry reforming of methane: In situ identification of Ruδ+-Ce3+ interactions for enhanced conversion, ACS Catal. 9 (4) (2019) 3349-3359. [15] R.K. Singha, A. Shukla, A. Sandupatla, G. Deo, R. Bal, Synthesis and catalytic activity of a Pd doped Ni-MgO catalyst for dry reforming of methane, J. Mater. Chem. A 5 (30) (2017) 15688-15699. [16] J. Wu, L.Y. Qiao, Z.F. Zhou, G.J. Cui, S.S. Zong, D.J. Xu, R.P. Ye, R.P. Chen, R. Si, Y.G. Yao, Revealing the synergistic effects of Rh and substituted La2B2O7 (B = Zr or Ti) for preserving the reactivity of catalyst in dry reforming of methane, ACS Catal. 9 (2) (2019) 932-945. [17] Y. Fu, W. Kong, B. Pan, C. Yuan, S. Li, H. Zhu, J. Zhang, In situ redispersion of rhodium nanocatalyst for CO2 reforming of CH4, Journal of Environmental Chemical Engineering, 9(4) (2021) 105790. [18] W.J. Jang, J.O. Shim, H.M. Kim, S.Y. Yoo, H.S. Roh, A review on dry reforming of methane in aspect of catalytic properties, Catal. Today 324 (2019) 15-26. [19] Y. Xu, X.H. Du, J. Li, P. Wang, J. Zhu, F.J. Ge, J. Zhou, M. Song, W.Y. Zhu, A comparison of Al2O3 and SiO2 supported Ni-based catalysts in their performance for the dry reforming of methane, J. Fuel Chem. Technol. 47 (2) (2019) 199-208. [20] M.A. Khan, M.S. Challiwala, A.V. Prakash, N.O. Elbashir, Conceptual modeling of a reactor bed of a nickel-copper bi-metallic catalyst for dry reforming of methane, Chem. Eng. Sci. 267 (2023) 118315. [21] P.B. Kurmashov, A.G. Bannov, M.V. Popov, A.E. Brester, A.V. Ukhina, A.V. Ishchenko, E.A. Maksimovskii, L.I. Tolstobrova, A.O. Chulkov, G.G. Kuvshinov, COx-free catalytic decomposition of methane over solution combustion synthesis derived catalyst: Synthesis of hydrogen and carbon nanofibers, Int. J. Energy Res. 46 (9) (2022) 11957-11971. [22] L. Yao, J. Shi, H.L. Xu, W. Shen, C.W. Hu, Low-temperature CO2 reforming of methane on Zr-promoted Ni/SiO2 catalyst, Fuel Process. Technol. 144 (2016) 1-7. [23] Y. Kathiraser, U. Oemar, E.T. Saw, Z.W. Li, S. Kawi, Kinetic and mechanistic aspects for CO2 reforming of methane over Ni based catalysts, Chem. Eng. J. 278 (2015) 62-78. [24] M. Grabchenko, G. Pantaleo, F. Puleo, T.S. Kharlamova, V.I. Zaikovskii, O. Vodyankina, L.F. Liotta, Design of Ni-based catalysts supported over binary La-Ce oxides: Influence of La/Ce ratio on the catalytic performances in DRM, Catal. Today 382 (2021) 71-81. [25] P.K. Chaudhary, G. Deo, Process and catalyst improvements for the dry reforming of methane, Chem. Eng. Sci. 276 (2023) 118767. [26] R.L.B.A. Medeiros, G.P. Figueredo, H.P. Macedo, A.A.S. Oliveira, R.C. Rabelo-Neto, D.M.A. Melo, R.M. Braga, M.A.F. Melo, One-pot microwave-assisted combustion synthesis of Ni-Al2O3 nanocatalysts for hydrogen production via dry reforming of methane, Fuel 287 (2021) 119511. [27] J.G. Meng, W. Pan, T.T. Gu, C.S. Bu, J.B. Zhang, X.Y. Wang, C.Q. Liu, H. Xie, G.L. Piao, One-pot synthesis of a highly active and stable Ni-embedded hydroxyapatite catalyst for syngas production via dry reforming of methane, Energy Fuels 35 (23) (2021) 19568-19580. [28] L. Baharudin, A.C.K. Yip, V. Golovko, M.J. Watson, Potential of metal monoliths with grown carbon nanomaterials as catalyst support in intensified steam reformer: A perspective, Rev. Chem. Eng. 36 (4) (2020) 459-491. [29] C.Y. Jiang, M.R. Akkullu, B. Li, J.C. Davila, M.J. Janik, K.M. Dooley, Rapid screening of ternary rare-earth-Transition metal catalysts for dry reforming of methane and characterization of final structures, J. Catal. 377 (2019) 332-342. [30] J. Wang, Y.R. Mao, L.Z. Zhang, Y.L. Li, W.M. Liu, Q.X. Ma, D.S. Wu, H.G. Peng, Remarkable basic-metal oxides promoted confinement catalysts for CO2 reforming, Fuel 315 (2022) 123167. [31] X.L. He, D.Q. Zeng, Y.M. Liu, Q. Chen, J.R. Yang, R.C. Gao, T. Fujita, Y.Z. Wei, Porous CoxP nanosheets decorated Mn0.35Cd0.65S nanoparticles for highly enhanced noble-metal-free photocatalytic H2 generation, J. Colloid Interface Sci. 625 (2022) 859-870. [32] F.G. Wang, K.H. Han, L.L. Xu, H. Yu, W.D. Shi, Ni/SiO2 catalyst prepared by strong electrostatic adsorption for a low-temperature methane dry reforming reaction, Ind. Eng. Chem. Res. 60 (8) (2021) 3324-3333. [33] S. De, J.G. Zhang, R. Luque, N. Yan, Ni-based bimetallic heterogeneous catalysts for energy and environmental applications, Energy Environ. Sci. 9 (11) (2016) 3314-3347. [34] Z. Bian, S. Das, M.H. Wai, P. Hongmanorom, S. Kawi, A review on bimetallic nickel-based catalysts for CO2 reforming of methane, Chemphyschem 18 (22) (2017) 3117-3134. [35] S.N.A. Rosli, S.Z. Abidin, O.U. Osazuwa, X.L. Fan, Y.L. Jiao, The effect of oxygen mobility/vacancy on carbon gasification in nano catalytic dry reforming of methane: A review, J. CO2 Util. 63 (2022) 102109. [36] D.L. Li, S.P. Xu, K. Song, C.Q. Chen, Y.Y. Zhan, L.L. Jiang, Hydrotalcite-derived Co/Mg(Al) O as a stable and coke-resistant catalyst for low-temperature carbon dioxide reforming of methane, Appl. Catal. A Gen. 552 (2018) 21-29. [37] X.L. Fan, Z.T. Liu, Y.A. Zhu, G.S. Tong, J.D. Zhang, C. Engelbrekt, J. Ulstrup, K.K. Zhu, X.G. Zhou, Tuning the composition of metastable Cox Ni y Mg100-x-y (OH)(OCH3) nanoplates for optimizing robust methane dry reforming catalyst, J. Catal. 330 (2015) 106-119. [38] B. Erdogan, H. Arbag, N. Yasyerli, SBA-15 supported mesoporous Ni and Co catalysts with high coke resistance for dry reforming of methane, Int. J. Hydrog. Energy 43 (3) (2018) 1396-1405. [39] B. AlSabban, L. Falivene, S.M. Kozlov, A. Aguilar-Tapia, S. Ould-Chikh, J.L. Hazemann, L. Cavallo, J.M. Basset, K. Takanabe, In-operando elucidation of bimetallic CoNi nanoparticles during high-temperature CH4/CO2 reaction, Appl. Catal. B Environ. 213 (2017) 177-189. [40] K.F. Sheng, D. Luan, H. Jiang, F. Zeng, B. Wei, F. Pang, J.P. Ge, NixCoy nanocatalyst supported by ZrO2 hollow sphere for dry reforming of methane: Synergetic catalysis by Ni and co in alloy, ACS Appl. Mater. Interfaces 11 (27) (2019) 24078-24087. [41] M.A. Vasiliades, P. Djinovic, A. Pintar, J. Kovac, A.M. Efstathiou, The effect of CeO2-ZrO2 structural differences on the origin and reactivity of carbon formed during methane dry reforming over NiCo/CeO2-ZrO2 catalysts studied by transient techniques, Catal. Sci. Technol. 7 (22) (2017) 5422-5434. [42] M.A. Vasiliades, C.M. Damaskinos, P. Djinovic, A. Pintar, A.M. Efstathiou, Dry reforming of CH4 over NiCo/Ce0.75Zr0.25O2-δ: The effect of co on the site activity and carbon pathways studied by transient techniques, Catal. Commun. 149 (2021) 106237. [43] M.A. Vasiliades, C.M. Damaskinos, P. Djinovic, A. Pintar, A.M. Efstathiou, A transient isotopic study for investigating important design parameters of NiCo/Ce0.75Zr0.25O2-δ catalyst for the dry reforming of methane, Catal. Commun. 178 (2023) 106674. [44] B. Gong, T.M. Su, X.L. Xie, H.B. Ji, Z.Z. Qin, Promotional effects of Mg-substituted Ni/MgxHAP catalysts on carbon resistance during dry reforming of methane, Ind. Eng. Chem. Res. 62 (33) (2023) 12935-12948. [45] C.S. Wang, T.M. Su, Z.Z. Qin, H.B. Ji, Coke-resistant Ni-based bimetallic catalysts for the dry reforming of methane: Effects of indium on the Ni/Al2O3 catalyst, Catal. Sci. Technol. 12 (15) (2022) 4826-4836. [46] J. Horlyck, C. Lawrey, E.C. Lovell, R. Amal, J. Scott, Elucidating the impact of Ni and Co loading on the selectivity of bimetallic NiCo catalysts for dry reforming of methane, Chem. Eng. J. 352 (2018) 572-580. [47] J. Horlyck, M. Sara, E.C. Lovell, R. Amal, J. Scott, Effect of metal-support interactions in mixed Co/Al catalysts for dry reforming of methane, ChemCatChem 11 (15) (2019) 3432-3440. [48] I.V. Zagaynov, A.S. Loktev, A.L. Arashanova, V.K. Ivanov, A.G. Dedov, I.I. Moiseev, Ni(Co)-Gd0.1Ti0.1Zr0.1Ce0.7O2 mesoporous materials in partial oxidation and dry reforming of methane into synthesis gas, Chem. Eng. J. 290 (2016) 193-200. [49] Q. Song, R. Ran, X.D. Wu, Z.C. Si, D. Weng, Dry reforming of methane over Ni catalysts supported on micro- and mesoporous silica, J. CO2 Util. 68 (2023) 102387. [50] Y.X. Lin, C. Yang, W. Zhang, H. Machida, K. Norinaga, Lattice Boltzmann study on the effect of hierarchical pore structure on fluid flow and coke formation characteristics in open-cell foam for dry reforming of methane, Chem. Eng. Sci. 268 (2023) 118380. [51] Z. Boukha, M. Kacimi, M.F.R. Pereira, J.L. Faria, J.L. Figueiredo, M. Ziyad, Methane dry reforming on Ni loaded hydroxyapatite and fluoroapatite, Appl. Catal. A Gen. 317 (2) (2007) 299-309. [52] J.H. Park, S. Yeo, T.J. Kang, I. Heo, K.Y. Lee, T.S. Chang, Enhanced stability of Co catalysts supported on phosphorus-modified Al2O3 for dry reforming of CH4, Fuel 212 (2018) 77-87. [53] X.M. Lei, X.Z. Du, H. Xin, X.Q. Chen, H.R. Yang, L.Y. Zhou, Y. Zeng, H.L. Zhang, Y.F. Tian, D. Li, C.W. Hu, Chemical-switching strategy for the production of green biofuel on NiCo/MCM-41 catalysts by tuning atmosphere, Fuel 315 (2022) 123118. [54] K. Liu, F.L. Xing, Y.Y. Xiao, N. Yan, K.I. Shimizu, S. Furukawa, Development of a highly stable ternary alloy catalyst for dry reforming of methane, ACS Catal. 13 (6) (2023) 3541-3548. [55] L.L. Wang, G.G. Tang, S. Liu, H.L. Dong, Q.Q. Liu, J.F. Sun, H. Tang, Interfacial active-site-rich 0D Co3O4/1D TiO2 p-n heterojunction for enhanced photocatalytic hydrogen evolution, Chem. Eng. J. 428 (2022) 131338. [56] Y.X. Shi, L.L. Li, Z. Xu, F. Guo, W.L. Shi, Construction of full solar-spectrum available S-scheme heterojunction for boosted photothermal-assisted photocatalytic H2 production, Chem. Eng. J. 459 (2023) 141549. [57] C. Han, X.D. Zhang, S.S. Huang, Y. Hu, Z. Yang, T.T. Li, Q.P. Li, J.J. Qian, MOF-on-MOF-derived hollow Co3 O4/In2 O3 nanostructure for efficient photocatalytic CO2 reduction, Adv. Sci. 10 (19) (2023) e2300797. [58] J.N. Xin, H.J. Cui, Z.M. Cheng, Z.M. Zhou, Bimetallic Ni-Co/SBA-15 catalysts prepared by urea co-precipitation for dry reforming of methane, Appl. Catal. A Gen. 554 (2018) 95-104. [59] M. Abbas, U. Sikander, M.T. Mehran, S.H. Kim, Exceptional stability of hydrotalcite derived spinel Mg(Ni)Al2O4 catalyst for dry reforming of methane, Catal. Today 403 (2022) 74-85. [60] A.N.T. Cao, C.Q. Pham, T.M. Nguyen, T. Van Tran, P.T.T. Phuong, D.V N. Vo, Dysprosium promotion on Co/Al2O3 catalysts towards enhanced hydrogen generation from methane dry reforming, Fuel 324 (2022) 124818. [61] Y. Kwon, J.E. Eichler, C.B. Mullins, NiAl2O4 as a beneficial precursor for Ni/Al2O3 catalysts for the dry reforming of methane, J. CO2 Util. 63 (2022) 102112. [62] J.C.S. Araujo, A.L.G. Pinheiro, A.C. Oliveira, M.G.A. Cruz, J.M.C. Bueno, R.S. Araujo, R. Lang, Catalytic assessment of nanostructured Pt/xLa2O3-Al2O3 oxides for hydrogen production by dry reforming of methane: Effects of the lanthana content on the catalytic activity, Catal. Today 349 (2020) 141-149. [63] J. Sun, D. Yamaguchi, L.G. Tang, S. Periasamy, H.Y. Ma, J.N. Hart, C.A. Ken, Enhancement of oxygen exchanging capability by loading a small amount of ruthenium over ceria-zirconia on dry reforming of methane, Adv. Powder Technol. 33 (2) (2022) 103407. [64] J.G. Meng, T.T. Gu, W. Pan, C.S. Bu, J.B. Zhang, X.Y. Wang, C.Q. Liu, H. Xie, G.L. Piao, Promotional effects of defects on Ni/HAP catalyst for carbon resistance and durability during dry reforming of methane, Fuel 310 (2022) 122363. |
[1] | Xufang Chen, Xin Shu, Yanru Zhu, Jian Zhang, Zhigang Chai, Hongyan Song, Zhe An, Jing He. Highly dispersed MgInCe-mixed metal oxides catalyzed direct carbonylation of glycerol and CO2 into glycerol carbonate [J]. Chinese Journal of Chemical Engineering, 2024, 72(8): 153-163. |
[2] | Junjie Cai, Xijian Li, Hao Sui, Honggao Xie. Study on the evolution of solid–liquid–gas in multi-scale pore methane in tectonic coal [J]. Chinese Journal of Chemical Engineering, 2024, 71(7): 122-131. |
[3] | Shutong Pang, Hualiang An, Xinqiang Zhao, Yanji Wang. Ionic liquid-assisted preparation of hydroxyapatite and its catalytic performance for decarboxylation of itaconic acid [J]. Chinese Journal of Chemical Engineering, 2024, 67(3): 9-15. |
[4] | Haixin Sun, Jianlei Qi, Jianfei Sun, Lin Li, Kunpeng Yu, Jintao Wu, Jianzhong Yin. Solubility of iron(III) and nickel(II) acetylacetonates in supercritical carbon dioxide [J]. Chinese Journal of Chemical Engineering, 2024, 65(1): 29-34. |
[5] | Songling Guo, Xun Tao, Fan Zhou, Mengyan Yu, Yufan Wu, Yunfei Gao, Lu Ding, Fuchen Wang. Investigation of oxy-fuel combustion for methane and acid gas in a diffusion flame [J]. Chinese Journal of Chemical Engineering, 2024, 65(1): 106-116. |
[6] | Chaojie Li, Xianxin Fang, Meiling Sun, Jihai Duan, Weiwen Wang. Study on two-phase cloud dispersion from liquefied CO2 release [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 37-45. |
[7] | Xun Tao, Fan Zhou, Xinlei Yu, Songling Guo, Yunfei Gao, Lu Ding, Guangsuo Yu, Zhenghua Dai, Fuchen Wang. Effect of carbon dioxide on oxy-fuel combustion of hydrogen sulfide: An experimental and kinetic modeling [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 105-117. |
[8] | Yi Wu, Pengfei Song, Ningyan Li, Yanan Jiang, Yuan Liu. Molybdenum tailored Co0/Co2+ active pairs on a perovskite-type oxide for direct ethanol synthesis from syngas [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 279-289. |
[9] | Tatyana P. Adamova, Sergey S. Skiba, Andrey Yu. Manakov, Sergey Y. Misyura. Growth rate of CO2 hydrate film on water–oil and water–gaseous CO2 interface [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 266-272. |
[10] | Bowen Jiang, Jia Liu, Guoqiang Yang, Zhibing Zhang. Efficient conversion of CO2 into cyclic carbonates under atmospheric by halogen and metal-free poly(ionic liquid)s [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 202-211. |
[11] | Mingdong Sun, Dongxin Pan, Tingting Ye, Jing Gu, Yu Zhou, Jun Wang. Ionic porous polyamide derived N-doped carbon towards highly selective electroreduction of CO2 [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 212-221. |
[12] | Yu Wang, Qunfeng Zhang, Xinlei Liu, Junqi Weng, Guanghua Ye, Xinggui Zhou. Probing deactivation by coking in catalyst pellets for dry reforming of methane using a pore network model [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 293-303. |
[13] | Mengge Shang, Jing Zhang, Jinqiang Sun, Shimo Yu, Feng Hua, Xiaoxu Xuan, Xun Sun, Serguei Filatov, Xibin Yi. Amine-functionalized mesoporous UiO-66 aerogel for CO2 adsorption [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 36-43. |
[14] | Xianglin Liu, Minjie Xu, Chenxi Cao, Zixu Yang, Jing Xu. Effects of zinc on χ-Fe5C2 for carbon dioxide hydrogenation to olefins: Insights from experimental and density function theory calculations [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 206-214. |
[15] | Zhongyao Zhang, Ming Gao, Xiaopeng Chen, Xiaojie Wei, Jiezhen Liang, Chenghong Wu, Linlin Wang. The Joule–Thomson effect of (CO2 + H2) binary system relevant to gas switching reforming with carbon capture and storage (CCS) [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 215-231. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||