[1] E. Manek, J. Haydary, Investigation of the liquid recycle in the reactor cascade of an industrial scale ebullated bed hydrocracking unit, Chin. J. Chem. Eng. 27 (2) (2019) 298-304. [2] A. Marafi, H. Albazzaz, M.S. Rana, Hydroprocessing of heavy residual oil: Opportunities and challenges, Catal. Today 329 (2019) 125-134. [3] M.T. Nguyen, D. Le Tri Nguyen, C.L. Xia, T.B. Nguyen, M. Shokouhimehr, S.S. Sana, A.N. Grace, M. Aghbashlo, M. Tabatabaei, C. Sonne, S.Y. Kim, S.S. Lam, Q. Van Le, Recent advances in asphaltene transformation in heavy oil hydroprocessing: Progress, challenges, and future perspectives, Fuel Process. Technol. 213 (2021) 106681. [4] D. Stratiev, S. Nenov, I. Shishkova, B. Georgiev, G. Argirov, R. Dinkov, D. Yordanov, V. Atanassova, P. Vassilev, K. Atanassov, Commercial investigation of the ebullated-bed vacuum residue hydrocracking in the conversion range of 55-93, ACS Omega 5 (51) (2020) 33290-33304. [5] D. Chehadeh, X.L. Ma, H. Al Bazzaz, Recent progress in hydrotreating kinetics and modeling of heavy oil and residue: A review, Fuel 334 (2023) 126404. [6] Y. Pan, Y.T. Jing, T.H. Wu, X.X. Kong, Knowledge-based data augmentation of small samples for oil condition prediction, Reliab. Eng. Syst. Saf. 217 (2022) 108114. [7] Y.L. He, P.J. Wang, M.Q. Zhang, Q.X. Zhu, Y. Xu, A novel and effective nonlinear interpolation virtual sample generation method for enhancing energy prediction and analysis on small data problem: A case study of ethylene industry, Energy 147 (2018) 418-427. [8] G. Boquet, A. Morell, J. Serrano, J.L. Vicario, A variational autoencoder solution for road traffic forecasting systems: Missing data imputation, dimension reduction, model selection and anomaly detection, Transp. Res. Part C Emerg. Technol. 115 (2020) 102622. [9] H.F. Gong, Z.S. Chen, Q.X. Zhu, Y.L. He, A Monte Carlo and PSO based virtual sample generation method for enhancing the energy prediction and energy optimization on small data problem: An empirical study of petrochemical industries, Appl. Energy 197 (2017) 405-415. [10] K.F. Wang, C. Gou, Y.J. Duan, Y.L. Lin, X.H. Zheng, F.Y. Wang, Generative adversarial networks: Introduction and outlook, IEEE/CAA J. Autom. Sin. 4 (4) (2017) 588-598. [11] Y. Hou, N.Q. Wu, Z.W. Li, Y.X. Zhang, T. Qu, Q.H. Zhu, Many-objective optimization for scheduling of crude oil operations based on NSGA-Ⅲ with consideration of energy efficiency, Swarm Evol. Comput. 57 (2020) 100714. [12] Y. Yoo, U.J. Jung, Y.H. Han, J. Lee, Data augmentation-based prediction of system level performance under model and parameter uncertainties: Role of designable generative adversarial networks (DGAN), Reliab. Eng. Syst. Saf. 206 (2021) 107316. [13] H. Liu, Y.L. Tian, C.G. Peng, Z.Q. Wu, Privacy-utility equilibrium data generation based on Wasserstein generative adversarial networks, Inf. Sci. 642 (2023) 119069. [14] Z.R. Ma, J.J. Wang, Y.S. Feng, R.K. Wang, Z.H. Zhao, H.W. Chen, Hydrogen yield prediction for supercritical water gasification based on generative adversarial network data augmentation, Appl. Energy 336 (2023) 120814. [15] X. Han, L.H. Zhang, K. Zhou, X.N. Wang, ProGAN: Protein solubility generative adversarial nets for data augmentation in DNN framework, Comput. Chem. Eng. 131 (2019) 106533. [16] X. Xiong, X. Hu, H. Guo, A hybrid optimized grey seasonal variation index model improved by whale optimization algorithm for forecasting the residential electricity consumption, Energy 234 (2021) 121127. [17] H.G. Zhou, S.S. Gao, Y. Xie, C.Y. Zhang, J.F. Liu, Multi-condition wear prediction and assessment of milling cutters based on linear discriminant analysis and ensemble methods, Measurement 216 (2023) 112900. [18] S.M. Zhang, X.L. Bao, S.J. Wang, Common canonical variate analysis (CCVA) based modeling and monitoring for multimode processes, Chem. Eng. Sci. 271 (2023) 118581. [19] Y. Choi, B. Bhadriaju, H. Cho, J. Lim, I.S. Han, I. Moon, J.S.I. Kwon, J. Kim, Data-driven modeling of multimode chemical process: Validation with a real-world distillation column, Chem. Eng. J. 457 (2023) 141025. [20] L.P. de Oliveira, D. Hudebine, D. Guillaume, J.J. Verstraete, A review of kinetic modeling methodologies for complex processes, Oil Gas Sci. Technol. - Rev. IFP Energies Nouvelles 71 (3) (2016) 45. [21] J.F. Mosby, R.D. Buttke, J.A. Cox, C. Nikolaides, Process characterization of expanded-bed reactors in series, Chem. Eng. Sci. 41 (4) (1986) 989-995. [22] S.D.S. Asaee, L. Vafajoo, F. Khorasheh, A new approach to estimate parameters of a lumped kinetic model for hydroconversion of heavy residue, Fuel 134 (2014) 343-353. [23] S. Sanchez, M.A. Rodriguez, J. Ancheyta, Kinetic model for moderate hydrocracking of heavy oils, Ind. Eng. Chem. Res. 44 (25) (2005) 9409-9413. [24] A. Quitian, J. Ancheyta, Experimental methods for developing kinetic models for hydrocracking reactions with slurry-phase catalyst using batch reactors, Energy Fuels 30 (6) (2016) 4419-4437. [25] M.L. Li, T.X. Ren, Y.D. Sun, Analysis of reaction path and different lumped kinetic models for asphaltene hydrocracking, Fuel 325 (2022) 124840. [26] M.A.M. Fadzil, H. Zabiri, A.A. Razali, J. Basar, M. Syamzari Rafeen, Base oil process modelling using machine learning, Energies 14 (20) (2021) 6527. [27] B. Browning, F. Couenne, T. Jansen, M. Lacroix, P. Alvarez, M. Tayakout-Fayolle, Kinetic modeling of deep vacuum residue hydroconversion in a pilot scale continuous slurry reactor with recycle, Chem. Eng. J. Adv. 4 (2020) 100063. [28] Y.F. Wang, J.M. Lu, X. Zhang, X.Y. Zhang, B.H. Zhang, J.X. Wu, D. Guan, Y. Zhang, J.Y. Chen, X.Y. Feng, Y.H. Zhang, Z.Y. Zhou, L.Z. Zhang, Q. Shi, Molecular transformation of heavy oil during slurry phase hydrocracking process: A comparison between thermal cracking and hydrocracking, Fuel 351 (2023) 128981. [29] H.M.S. Lababidi, H.M. Sabti, F.S. AlHumaidan, Changes in asphaltenes during thermal cracking of residual oils, Fuel 117 (2014) 59-67. [30] D.C. Podgorski, Y.E. Corilo, L. Nyadong, V.V. Lobodin, B.J. Bythell, W.K. Robbins, A.M. McKenna, A.G. Marshall, R.P. Rodgers, Heavy petroleum composition. 5. compositional and structural continuum of petroleum revealed, Energy Fuels 27 (3) (2013) 1268-1276. [31] I.V. Kozhevnikov, A.L. Nuzhdin, O.N. Martyanov, Transformation of petroleum asphaltenes in supercritical water, J. Supercrit. Fluids 55 (1) (2010) 217-222. [32] M. Breysse, G. Djega-Mariadassou, S. Pessayre, C. Geantet, M. Vrinat, G. Perot, M. Lemaire, Deep desulfurization: Reactions, catalysts and technological challenges, Catal. Today 84 (3-4) (2003) 129-138. [33] I.J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, Y. Bengio, I. Haloui, J.S. Gupta, V. Feuillard, G. Begus, Generative adversarial networks, (2014): 1406.2661. [34] A. Kopbayev, F. Khan, M. Yang, S.Z. Halim, Fault detection and diagnosis to enhance safety in digitalized process system, Comput. Chem. Eng. 158 (2022) 107609. [35] D.O.L. Fontes, L.G.S. Vasconcelos, R.P. Brito, Blast furnace hot metal temperature and silicon content prediction using soft sensor based on fuzzy C-means and exogenous nonlinear autoregressive models, Comput. Chem. Eng. 141 (2020) 107028. [36] M. Kaushal, H. Garg, Q.M.D. Lohani, Global intuitionistic fuzzy weighted C-ordered means clustering algorithm, Inf. Sci. 642 (2023) 119087. [37] Q.Y. Cui, B. Zheng, B.S. Wang, J.T. Yan, J.Y. Liu, T.S. Li, J. Shi, T.H. Wang, Y.Y. Yue, Kinetics study on residue oil slurry-phase hydrocracking with Fe2O3 catalyst, Fuel 374 (2024) 132499. [38] C. Ferreira, J. Marques, M. Tayakout, I. Guibard, F. Lemos, H. Toulhoat, F. Ramoa Ribeiro, Modeling residue hydrotreating, Chem. Eng. Sci. 65 (1) (2010) 322-329. [39] A. Marafi, A. Stanislaus, E. Furimsky, Kinetics and modeling of petroleum residues hydroprocessing, Catal. Rev. 52 (2) (2010) 204-324. [40] G. Felix, J. Ancheyta, Using separate kinetic models to predict liquid, gas, and coke yields in heavy oil hydrocracking, Ind. Eng. Chem. Res. 58 (19) (2019) 7973-7979. [41] B. Browning, P. Alvarez, T. Jansen, M. Lacroix, C. Geantet, M. Tayakout-Fayolle, A review of thermal cracking, hydrocracking, and slurry phase hydroconversion kinetic parameters in lumped models for upgrading heavy oils, Energy Fuels 35 (19) (2021) 15360-15380. [42] X.L. Li, W.J. Zhao, X.L. Dong, A new CG algorithm based on a scaled memoryless BFGS update with adaptive search strategy, and its application to large-scale unconstrained optimization problems, J. Comput. Appl. Math. 398 (2021) 113670. [43] Y. Fan, J.Z. Yin, G. Shi, H.Y. Liu, J.S. Gao, X.J. Bao, A six-lump kinetic model for olefin hydrogenation, hydroisomerization and aromatization in FCC gasoline hydro-upgrading, Catal. Lett. 129 (1) (2009) 181-188. [44] S. Syama, J. Ramprabhakar, R. Anand, J.M. Guerrero, A hybrid Extreme Learning Machine model with Levy flight Chaotic Whale Optimization Algorithm for Wind Speed Forecasting, Results Eng. 19 (2023) 101274. [45] D. Stratiev, V. Toteva, I. Shishkova, S. Nenov, D. Pilev, K. Atanassov, V. Bureva, S. Vasilev, D.D. Stratiev, Industrial investigation of the combined action of vacuum residue hydrocracking and vacuum gas oil catalytic cracking while processing different feeds and operating under distinct conditions, Processes 11 (11) (2023) 3174. |