[1] J.H. Zheng, H.J. Wang, Z.H. Song, Z.Q. Ge, Ensemble semi-supervised Fisher discriminant analysis model for fault classification in industrial processes, ISA Trans. 92 (2019) 109-117. [2] Z.L. Ren, Y.C. Jiang, X.B. Yang, Y.Q. Tang, W.S. Zhang, Learnable faster kernel-PCA for nonlinear fault detection: deep autoencoder-based realization, J. Ind. Inf. Integr. 40 (2024) 100622. [3] A. Fazli, J. Poshtan, Wind turbine fault detection and isolation robust against data imbalance using KNN, Energy Sci. Eng. 12 (3) (2024) 1174-1186. [4] X.F. Yuan, W.W. Xu, Y.L. Wang, C.H. Yang, W.H. Gui, A deep residual PLS for data-driven quality prediction modeling in industrial process, IEEE/CAA J. Autom. Sin. 11 (8) (2024) 1777-1785. [5] W.D. Tian, Z.J. Liu, L.N. Li, S.F. Zhang, C.K. Li, Identification of abnormal conditions in high-dimensional chemical process based on feature selection and deep learning, Chin. J. Chem. Eng. 28 (7) (2020) 1875-1883. [6] H. Wu, J.S. Zhao, Deep convolutional neural network model based chemical process fault diagnosis, Comput. Chem. Eng. 115 (2018) 185-197. [7] C. Guo, W.K. Hu, F. Yang, D.X. Huang, Deep learning technique for process fault detection and diagnosis in the presence of incomplete data, Chin. J. Chem. Eng. 28 (9) (2020) 2358-2367. [8] C.T. Wang, H.B. Shi, B. Song, Y. Tao, Hierarchical multihead self-attention for time-series-based fault diagnosis, Chin. J. Chem. Eng. 70 (2024) 104-117. [9] L.J. Feng, C.H. Zhao, Fault description based attribute transfer for zero-sample industrial fault diagnosis, IEEE Trans. Ind. Inf. 17 (3) (2021) 1852-1862. [10] Z.J. Yao, P.Y. Song, C.H. Zhao, Finding trustworthy neighbors: graph aided federated learning for few-shot industrial fault diagnosis with data heterogeneity, J. Process Control 129 (2023) 103038. [11] S.W. Xiong, L. Zhou, Y.Y. Dai, X. Ji, Attention-based long short-term memory fully convolutional network for chemical process fault diagnosis, Chin. J. Chem. Eng. 56 (2023) 1-14. [12] P. Peng, Y. Wang, W.J. Zhang, Y. Zhang, H.M. Zhang, Imbalanced process fault diagnosis using enhanced auxiliary classifier GAN, In:2020 Chinese Automation Congress (CAC), Shanghai, China. IEEE, 2020. [13] R.S. Qin, J.S. Zhao, High-efficiency generative adversarial network model for chemical process fault diagnosis, IFAC-PapersOnLine 55 (7) (2022) 732-737. [14] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,S. Ozair,A. Courville, Y. Bengio, Generative adversarial nets, In: Proceedings of the 27th International Conference on Neural Information Processing Systems, Lake Tahoe, Nevada, USA, 2014. [15] X.W. Jia, J. Willard, A. Karpatne, J.S. Read, J.A. Zwart, M. Steinbach, V. Kumar, Physics-guided machine learning for scientific discovery: an application in simulating lake temperature profiles, ACM/IMS Trans. Data Sci. 2 (3) (2021) 1-26. [16] M. Raissi, P. Perdikaris, G.E. Karniadakis, Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations, J. Comput. Phys. 378 (2019) 686-707. [17] K. Yonekura, Physics-guided generative adversarial network to learn physical models, (2023): 2304.11488. [18] G. Achour, W.J. Sung, O.J. Pinon-Fischer, D.N. Mavris, Development of a conditional generative adversarial network for airfoil shape optimization, In: AIAA Scitech 2020 Forum. Orlando, FL. Reston, Virginia, 2020. [19] G. Manca, Tennessee-Eastman-Process alarm management dataset, IEEE DataPort, 2020, doi: 10.21227/326k-qr90. [20] S.S. Ge, C.C. Hang, T. Zhang, Nonlinear adaptive control using neural networks and its application to CSTR systems, J. Process Control 9 (4) (1999) 313-323. |