[1] U.N.E. Programme, Turning off the Tap: How the World can End Plastic Pollution and Create a Circular Economy. United Nations Environment Programme, (2023). [2] OECD, Global Plastics Outlook: Economic Drivers, Environmental Impacts and Policy Options, OECD Publishing, Paris, 2022. [3] K. Zheng, Y. Wu, Z.X. Hu, S.M. Wang, X.C. Jiao, J.C. Zhu, Y.F. Sun, Y. Xie, Progress and perspective for conversion of plastic wastes into valuable chemicals, Chem. Soc. Rev. 52 (1) (2023) 8-29. [4] L. Zou, R. Xu, H. Wang, Z.Q. Wang, Y.H. Sun, M.F. Li, Chemical recycling of polyolefins: a closed-loop cycle of waste to olefins, Natl. Sci. Rev. 10 (9) (2023) nwad207. [5] H.Q. Li, H.A. Aguirre-Villegas, R.D. Allen, X.L. Bai, C.H. Benson, G.T. Beckham, S.L. Bradshaw, J.L. Brown, R.C. Brown, V.S. Cecon, J.B. Curley, G.W. Curtzwiler, S. Dong, S. Gaddameedi, J.E. Garcia, I. Hermans, M.S. Kim, J.Z. Ma, L.O. Mark, M. Mavrikakis, O.O. Olafasakin, T.A. Osswald, K.G. Papanikolaou, H. Radhakrishnan, M.A. Sanchez Castillo, K.L. Sanchez-Rivera, K.N. Tumu, R.C. Van Lehn, K.L. Vorst, M.M. Wright, J.Y. Wu, V.M. Zavala, P.Z. Zhou, G.W. Huber, Expanding plastics recycling technologies: chemical aspects, technology status and challenges, Green Chem. 24 (23) (2022) 8899-9002. [6] S. M. Quan, Y. J. Zhang, X. F. Song, R. P. Du, D. Yu. Status and industrialization progress in dechlorination technologies for waste plastics. China Plastics 36 (09) (2022) 122-130. [7] M. Kusenberg, M. Roosen, A. Zayoud, M.R. Djokic, H.D. Thi, S. De Meester, K. Ragaert, U. Kresovic, K.M. Van Geem, Assessing the feasibility of chemical recycling via steam cracking of untreated plastic waste pyrolysis oils: Feedstock impurities, product yields and coke formation, Waste Manag. 141 (2022) 104-114. [8] M. Sadat-Shojai, G.R. Bakhshandeh, Recycling of PVC wastes, Polym. Degrad. Stab. 96 (4) (2011) 404-415. [9] T. Ma, Q. Q. Liu, X. L. Wei, H. T. Song, M. F. Li. Influence and countermeasures of silicon and chlorine impurities on waste plastic pyrolysis oil. China Plastics 36 (08) (2022) 127-134. [10] C.H. Park, H.S. Jeon, J.K. Park, PVC removal from mixed plastics by triboelectrostatic separation, J. Hazard. Mater. 144 (1-2) (2007) 470-476. [11] I. Vollmer, M.J.F. Jenks, M.C.P. Roelands, R.J. White, T. van Harmelen, P. de Wild, G.P. van der Laan, F. Meirer, J.T.F. Keurentjes, B.M. Weckhuysen, Beyond mechanical recycling: giving new life to plastic waste, Angew. Chem. Int. Ed 59 (36) (2020) 15402-15423. [12] Apk AG, Newcycling® - high-quality plastics from complex waste, https://www.apk.group/en/. [13] M. Schlummer, T. Fell, A. Maurer, G. Altnau. The role of chemistry in plastics recycling: A comparison of physical and chemical plastics recycling. Kunststoffe international 5 (2020) 34-37. [14] P.Z. Zhou, K.L. Sanchez-Rivera, G.W. Huber, R.C. Van Lehn, Computational approach for rapidly predicting temperature-dependent polymer solubilities using molecular-scale models, ChemSusChem 14 (19) (2021) 4307-4316. [15] T.W. Walker, N. Frelka, Z. Shen, A.K. Chew, J. Banick, S. Grey, M.S. Kim, J.A. Dumesic, R.C. Van Lehn, G.W. Huber, Recycling of multilayer plastic packaging materials by solvent-targeted recovery and precipitation, Sci. Adv. 6 (47) (2020) eaba7599. [16] M. F. Li, Z. Q. Cai, L. Zou, X. L. Wei, Y. B. Xi, G. Q. Wang, L. L. Cai, Z. M. Zhang, G. F. Xia, H. B. Jiang. Exploration on Chemical Recovery Technology of Plastic Wastes in Sinopec. China Plastics 35 (08) (2021) 64-76. [17] Y.B. Zhao, X.D. Lv, H.G. Ni, Solvent-based separation and recycling of waste plastics: a review, Chemosphere 209 (2018) 707-720. [18] F. Tumakaka, J. Gross, G. Sadowski, Thermodynamic modeling of complex systems using PC-SAFT, Fluid Phase Equilib. 228 (2005) 89-98. [19] A. Tihic, G.M. Kontogeorgis, N. von Solms, M.L. Michelsen, L. Constantinou, A predictive group-contribution simplified PC-SAFT equation of state: application to polymer systems, Ind. Eng. Chem. Res. 47 (15) (2008) 5092-5101. [20] C.M. Hansen, Hansen solubility parameters: a user’s handbook. 2nd ed. Boca Raton, Fla.: Taylor & Francis, 2007. [21] T. Oishi, J.M. Prausnitz, Estimation of solvent activities in polymer solutions using a group-contribution method, Ind. Eng. Chem. Proc. Des. Dev. 17 (3) (1978) 333-339. [22] A. Klamt, The COSMO and COSMO-RS solvation models, Wiley Interdiscip. Rev. Comput. Mol. Sci. 1 (5) (2011) 699-709. [23] C. Loschen, A. Klamt, Prediction of solubilities and partition coefficients in polymers using COSMO-RS, Ind. Eng. Chem. Res. 53 (28) (2014) 11478-11487. [24] M. Mohan, J.D. Keasling, B.A. Simmons, S. Singh, In silico COSMO-RS predictive screening of ionic liquids for the dissolution of plastic, Green Chem. 24 (10) (2022) 4140-4152. [25] Z. Song, D. Yu, Q. Zeng, J.J. Zhang, H.Y. Cheng, L.F. Chen, Z.W. Qi, Effect of water on extractive desulfurization of fuel oils using ionic liquids: a COSMO-RS and experimental study, Chin. J. Chem. Eng. 25 (2) (2017) 159-165. [26] C.B. Bavoh, B. Lal, O. Nashed, M.S. Khan, L.K. Keong, M.A. Bustam, COSMO-RS: an ionic liquid prescreening tool for gas hydrate mitigation, Chin. J. Chem. Eng. 24 (11) (2016) 1619-1624. [27] Z.G. Lei, B.F. Zhang, J.Q. Zhu, W.F. Gong, J.N. Lu, Y.S. Li, Solubility of CO2 in methanol, 1-octyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide, and their mixtures, Chin. J. Chem. Eng. 21 (3) (2013) 310-317. [28] R. Ruger, M. Franchini, T. Trnka, A. Yakovlev, E. Van Lenthe, P. Philipsen, T. Van Vuren, B. Klumpers, T. Soini. AMS 2023.1, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam (The Netherlands). (2023). [29] C.C. Pye, T. Ziegler, An implementation of the conductor-like screening model of solvation within the Amsterdam density functional package, Theor. Chem. Acc. 101 (6) (1999) 396-408. [30] G. Te Velde, F. M. Bickelhaupt, E. J. Baerends, C. Fonseca Guerra, S. J. A. Van Gisbergen, J. G. Snijders, T. Ziegler. Chemistry with ADF. J. Comput. Chem. 22 (9) (2001) 931-967. [31] J. P. Perdew. Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys. Rev. B Condens. Matter. 33 (12) (1986) 8822-8824. [32] A. D. Becke. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A Gen. Phys. 38 (6) (1988) 3098-3100. [33] E. Van Lenthe, E. J. Baerends. Optimized Slater-type basis sets for the elements 1-118. J. Comput. Chem. 24 (9) (2003) 1142-1156. [34] K. L. Phillips, S. I. Sandler, R. W. Greene, D. M. Di Toro. Quantum mechanical predictions of the Henry's law constants and their temperature dependence for the 209 polychlorinated biphenyl congeners. Environ. Sci. Technol. 42 (22) (2008) 8412-8418. [35] E. Mullins, R. Oldland, Y. A. Liu, S. Wang, S. I. Sandler, C.-C. Chen, M. Zwolak, K. C. Seavey. Sigma-Profile Database for Using COSMO-Based Thermodynamic Methods. Ind. Eng. Chem. Res. 45 (12) (2006) 4389-4415. [36] E. Mullins, Y. A. Liu, A. Ghaderi, S. D. Fast. Sigma Profile Database for Predicting Solid Solubility in Pure and Mixed Solvent Mixtures for Organic Pharmacological Compounds with COSMO-Based Thermodynamic Methods. Ind. Eng. Chem. Res. 47 (5) (2008) 1707-1725. [37] S. Kim, J. Chen, T.J. Cheng, A. Gindulyte, J. He, S.Q. He, Q.L. Li, B.A. Shoemaker, P.A. Thiessen, B. Yu, L. Zaslavsky, J. Zhang, E.E. Bolton, PubChem 2023 update, Nucleic Acids Res. 51 (D1) (2023) D1373-D1380. [38] B. Wunderlich. Thermal Analysis. Academic Press (1990). [39] K.G. Patterson, S.J. Padgett, N.A. Peppas, Microcrystalline and three-dimensional network structure of plasticized poly(vinyl chloride), Colloid Polym. Sci. 260 (9) (1982) 851-858. |