[1] J. Zhao, Q. Wei, S. Wang, X. Ren, Progress of ship exhaust gas control technology, Sci. Total Environ. 799 (2021) 149437. [2] J.S. Kim, D.Y. Kim, Energy, exergy, and economic (3E) analysis of boil-off gas re-liquefaction systems using LNG cold energy for LNG-fueled ships, J. Mar. Sci. Eng. 11 (3) (2023) 587. [3] G. Bassioni, H. Klein, Liquefaction of natural gas and simulated process optimization-A review, Ain Shams Eng. J. 15 (2) (2024) 102431. [4] S. Wu, T. Li, R. Chen, S. Huang, F.G. Xu, B. Wang, Transient performance of gas-engine-based power system on ships: An overview of modeling, optimization, and applications, J. Mar. Sci. Eng. 11 (12) (2023) 2321. [5] R. Mansoor, M. Tahir, Recent developments in natural gas flaring reduction and reformation to energy-efficient fuels: A review, Energy Fuels 35 (5) (2021) 3675-3714. [6] E.A. Roszak, M. Chorowski, Exergy analysis of combined simultaneous Liquid Natural Gas vaporization and Adsorbed Natural Gas cooling, Fuel 111 (2013) 755-762. [7] B.C. Sun, S. Kayal, A. Chakraborty, Study of HKUST (Copper benzene-1, 3, 5-tricarboxylate, Cu-BTC MOF)-1 metal organic frameworks for CH4 adsorption: An experimental Investigation with GCMC (grand canonical Monte-Carlo) simulation, Energy 76 (2014) 419-427. [8] J.X. Wang, Y.L. Ju, Design of LNG vehicle used insulation cylinder BOG adsorption recovery system, Cryogenics (1) (2017) 36-40. [9] J.X. Wang, Design and performance testing of BOG adsorption recovery device for vehicular LNG insulated gas cylinders, Master Thesis, Shanghai Jiaotong University, Shanghai, 2017. (in Chinese). [10] A.Z. Gu, LNG technology, China Machine Press, Beijing, 2015. (in Chinese). [11] I.E. Men’shchikov, A.V. Shkolin, E.V. Khozina, A.E. Grinchenko, A.A. Fomkin, Mesoporous carbon xerogel as a promising adsorbent for capture and storage of liquified natural gas vapors, Adsorption 29 (5) (2023) 255-273. [12] S.Y. Kim, J.H. Kang, S.I. Kim, Y.S. Bae, Extraordinarily large and stable methane delivery of MIL-53(Al) under LNG-ANG conditions, Chem. Eng. J. 365 (2019) 242-248. [13] S.Y. Kim, S. Han, S. Lee, J.H. Kang, S. Yoon, W. Park, M.W. Shin, J. Kim, Y.G. Chung, Y.S. Bae, Discovery of high-performing metal-organic frameworks for on-board methane storage and delivery via LNG-ANG coupling: High-throughput screening, machine learning, and experimental validation, Adv. Sci. 9 (21) (2022) 2201559. [14] S. Kayal, B.C. Sun, A. Chakraborty, Study of metal-organic framework MIL-101(Cr) for natural gas (methane) storage and compare with other MOFs (metal-organic frameworks), Energy 91 (2015) 772-781. [15] A. Memetova, I. Tyagi, R.R. Karri, V. Kumar, K. Tyagi, Suhas, N. Memetov, A. Zelenin, T. Pasko, A. Gerasimova, D. Tarov, M.H. Dehghani, K. Singh, Porous carbon-based material as a sustainable alternative for the storage of natural gas (methane) and biogas (biomethane): A review, Chem. Eng. J. 446 (2022) 137373. [16] T. Jia, Y.F. Gu, F.T. Li, Progress and potential of metal-organic frameworks (MOFs) for gas storage and separation: A review, J. Environ. Chem. Eng. 10 (5) (2022) 108300. [17] S.X. Wu, Y.L. Ju, Numerical study of the boil-off gas (BOG) generation characteristics in a type C independent liquefied natural gas (LNG) tank under sloshing excitation, Energy 223 (2021) 120001. [18] W. Yang, Technical and economic analysis of diesel engine oil to gas for inland ships, Master Thesis, Chongqing Jiaotong University, Chongqing, 2019. (in Chinese). [19] Y.T. Li, Design of the main engine gas system for small multi-purpose LNG carriers, Master Thesis, Shanghai Jiaotong University, Shanghai, 2016. (in Chinese). [20] H. Wang, Structure improvement and heat transfer enhancement of typical MOFs based on adsorbed natural gas (ANG), Master Thesis, Jimei University, Xiamen, 2023. (in Chinese). [21] J.P. Barbosa Mota, A.E. Rodrigues, E. Saatdjian, D. Tondeur, Charge dynamics of a methane adsorption storage system: Intraparticle diffusional effects, Adsorption 3 (2) (1997) 117-125. [22] A. Delahaye, A. Aoufi, A. Gicquel, I. Pentchev, Improvement of hydrogen storage by adsorption using 2-D modeling of heat effects, AlChE. J. 48 (9) (2002) 2061-2073. [23] M.A. Richard, P. Benard, R. Chahine, Gas adsorption process in activated carbon over awidetemperature range above the critical point. Part2: Conservation ofmass and energy, Adsorption 15 (1) (2009) 53-63. [24] Y.H. Xiao, S. Qiu, Q.D. Zhao, Y.H. Zhu, C.B. Godiya, G.H. He, Numerical simulation of low-concentration CO2 adsorption on fixed bed using finite element analysis, Chin. J. Chem. Eng. 36 (2021) 47-56. [25] Z.H. Wang, Adsorption equilibrium of methane on typical adsorption materials, Master Thesis, Jimei University, Xiamen, 2018. (in Chinese). [26] E. Tsivion, M. Head-Gordon, Methane storage: Molecular mechanisms underlying room-temperature adsorption in Zn4O(BDC)3 (MOF-5), J. Phys. Chem. C 121 (22) (2017) 12091-12100. [27] Y. Zhang, Adsorption of N2/CH4/CO2 in coalbed methane on metal organic framework material MIL-101, Master Thesis, Tianjin University, Tianjin, 2015. (in Chinese). [28] M. Li, Adsorption characteristics of methane on AX-21 activated carbon, Master Thesis, Tianjin University, Tianjin, 1998. (in Chinese). |