[1] A. Yang, Z.Y. Kong, J. Sunarso, W.F. Shen, Towards energy saving and carbon reduction of pressure-swing distillation for separating the ternary azeotropic mixtures by thermodynamic insights and process intensification, Sep. Purif. Technol. 301 (2022) 121983. [2] Y.G. Xu, J.L. Li, Q. Ye, Y.D. Li, Design and optimization for the separation of tetrahydrofuran/isopropanol/water using heat pump assisted heat-integrated extractive distillation, Sep. Purif. Technol. 277 (2021) 119498. [3] H.X. Li, W.X. Wang, Y.M. Wang, C. Li, Y.L. Wang, Z.Y. Zhu, P.Z. Cui, X. Li, Y.S. Li, Dynamic real-time energy saving control of pressure-swing distillation based on artificial neural networks, Chem. Eng. Sci. 282 (2023) 119271. [4] T. Svitnic, N.T.Q. Do, T. Schuhmann, T. Renner, S. Haag, E. Ors, Data-driven approach for predictive modeling of by-product formation in methanol synthesis. 30th European Symposium on Computer Aided Process Engineering. Elsevier, (2020), pp 5-510. [5] Q.S. Li, N. Hu, S.P. Zhang, Q.P. Wu, J. Qi, Energy-saving heat integrated extraction-azeotropic distillation for separating isobutanol-ethanol-water, Sep. Purif. Technol. 255 (2021) 117695. [6] Y. Wang, L.W. Fan, P. Tuyishime, P. Zheng, J.B. Sun, Synthetic methylotrophy: a practical solution for methanol-based biomanufacturing, Trends Biotechnol. 38 (6) (2020) 650-666. [7] M. Aurangzeb, A.K. Jana, A novel heat integrated extractive dividing wall column for ethanol dehydration, Ind. Eng. Chem. Res. 58 (21) (2019) 9109-9117. [8] C.L. Li, C. Duan, J. Fang, H.S. Li, Process intensification and energy saving of reactive distillation for production of ester compounds, Chin. J. Chem. Eng. 27 (6) (2019) 1307-1323. [9] S. Tututi-Avila, N. Medina-Herrera, J. Hahn, A. Jimenez-Gutierrez, Design of an energy-efficient side-stream extractive distillation system, Comput. Chem. Eng. 102 (2017) 17-25. [10] X. Ma, Y.Q. Luo, Y.J. Ma, X.G. Yuan, Equation-oriented optimization of methanol distillation systems using pseudo-transient models, Comput. Chem. Eng. 127 (2019) 218-232. [11] P. Qiu, B. Huang, Z.H. Dai, F.C. Wang, Data-driven analysis and optimization of externally heat-integrated distillation columns (EHIDiC), Energy 189 (2019) 116177. [12] R.M.L.O. Souto, G. Wanderley Farias Neto, F.S. de Araujo, M.F. de Figueiredo, W.B. Ramos, K.D. Brito, R.P. Brito, Rigorous thermodynamic evaluation of the extractive distillation process, Chem. Eng. Res. Des. 133 (2018) 195-203. [13] A. Yang, T. Shi, S.R. Sun, S.A. Wei, W.F. Shen, J.Z. Ren, Dynamic controllability investigation of an energy-saving double side-stream ternary extractive distillation process, Sep. Purif. Technol. 225 (2019) 41-53. [14] M. Ferchichi, L. Hegely, P. Lang, Economic and environmental evaluation of heat pump-assisted pressure-swing distillation of maximum-boiling azeotropic mixture water-ethylenediamine, Energy 239 (2022) 122608. [15] Chu Y Z, Qin L P, Wang S L, et al. Optimum design of methanol distillation process and columns, Chem. Ind. Eng. Prog. (2008) 27 1659-1662. (in Chinese). [16] K. Tang, P. Bai, J.W. Zhang, Y. Huo, Separation of methanol-toluene azeotropic mixture by extractive distillation, Asian J. Chem. 25 (1) (2013) 321-326. [17] R.Y. Wang, Y.F. Song, Y.Z. Du, H.Z. Yan, F. Luo, L.Y. Sun, Isobaric vapor-liquid equilibria and extractive distillation process design for separating methanol and methylal, J. Chem. Eng. Data 65 (8) (2020) 3955-3964. [18] H.C. Van Ness, F. Pedersen, P. Rasmussen, Vapor-liquid equilibrium: part V. Data reduction by maximum likelihood, AlChE. J. 24 (6) (1978) 1055-1063. [19] J.W. Kang, V. Diky, R.D. Chirico, J.W. Magee, C.D. Muzny, I. Abdulagatov, A.F. Kazakov, M. Frenkel, Quality assessment algorithm for vapor-liquid equilibrium data, J. Chem. Eng. Data 55 (9) (2010) 3631-3640. [20] A. Frolkova, A. Frolkova, I. Gaganov, Extractive and auto-extractive distillation of azeotropic mixtures, Chem. Eng. Technol. 44 (8) (2021) 1397-1402. [21] M. Bertau, H. Offermanns, G. Menges, W. Keim, F.X. Effenberger, Methanol needs more attention as a fuel and raw material for the future, Chem. Ing. Tech. 82 (12) (2010) 2055-2058. [22] H. Zhao, J. Li, L. Wang, C.S. Li, P. Li, Thermodynamic investigation of 1, 3, 5-trioxane, methyl acrylate, methyl acetate, and water mixtures, in terms of NRTL and UNIQUAC models, Ind. Eng. Chem. Res. 58 (39) (2019) 18378-18386. [23] Jiao J, Guo B, Liu Y, et al. Discussion on process simulation of unconventional components rectification column in ASPENPLUS, Chem. Eng. Equipment (2013) (9) 59-65+11. (in Chinese). [24] W.L. Luyben, Rigorous dynamic models for distillation safety analysis, Comput. Chem. Eng. 40 (2012) 110-116. [25] R. Baur, A.P. Higler, R. Taylor, R. Krishna, Comparison of equilibrium stage and nonequilibrium stage models for reactive distillation, Chem. Eng. J. 76 (1) (2000) 33-47. [26] H. Kwon, K.C. Oh, Y. Choi, Y.G. Chung, J. Kim, Development and application of machine learning-based prediction model for distillation column, Int. J. Intell. Syst. 36 (5) (2021) 1970-1997. [27] X.C. Xue, Q.F. Gu, H. Pascal, O.M. Darwesh, B. Zhang, Z.Q. Li, Simulation and optimization of three-column triple-effect methanol distillation scheme, Chem. Eng. Process. Process Intensif. 159 (2021) 108229. |