Chinese Journal of Chemical Engineering ›› 2019, Vol. 27 ›› Issue (10): 2447-2454.doi: 10.1016/j.cjche.2019.03.005
• Catalysis, kinetics and reaction engineering • Previous Articles Next Articles
Xiaoxu Han, Ying Li, Hualiang An, Xinqiang Zhao, Yanji Wang
Received:
2018-06-13
Revised:
2019-03-11
Online:
2019-10-28
Published:
2020-01-17
Contact:
Xinqiang Zhao
E-mail:zhaoxq@hebut.edu.cn
Supported by:
Xiaoxu Han, Ying Li, Hualiang An, Xinqiang Zhao, Yanji Wang. Chitosan-catalyzed n-butyraldehyde self-condensation reaction mechanism and kinetics[J]. Chinese Journal of Chemical Engineering, 2019, 27(10): 2447-2454.
[1] P. Moggi, G. Albanesi, Gas phase aldol condensation of n-butyraldehyde to 2-ethylhexenal, Appl. Catal. 68(1) (1991) 285-300. [2] A.N. Ko, C.H. Hu, J. Chen, Efficient direct synthesis of 2-ethylhexanal from n-butyraldehyde and hydrogen using palladium modified base catalysts, Appl. Catal. A Gen. 184(2) (1999) 211-217. [3] C.N. Chen, L.L. Wu, H.L. An, X.Q. Zhao, Progress on the catalyst for the synthesis of 2-ethy-2-hexenal via n-butyraldehyde self-condensation, Chem. 76(4) (2013) 313-318. [4] H. Tsuji, F. Yagi, H. Hattori, H. Kita, Self-condensation of n-butyraldehyde over solid base catalysis, J. Catal. 148(2) (1994) 759-770. [5] G. Zhang, H. Hattori, K. Tanabe, Aldol addition of n-butyraldehyde over solid base catalysts, Bull. Chem. Soc. Jpn. 62(6) (1998) 2070-2072. [6] H. Lou, H. Sun, J.Z. Duan, Y.Q. Ding, J.X. Han, W. Li, X.M. Zheng, Method and preparation of n-butyraldehyde condensation reaction of magnesia catalyst, China Pat., 102070419A (2011). [7] Y.Y. Zhang, Self-Condensation of n-Butyraldehyde to 2-Ethyl-2-Hexenal Over Novel Catalytic, M. S. Thesis Shanghai Normal University, Shanghai, 2010. [8] B.J. Arena, J.S. Holmgren, 2-Ehyl-2-hexenal by aldol condensation of butyraldehyde in a continuous process, US Pat., 5144089(1992). [9] A.A. Schutz, Process for aldol condensation, US Pat., 5055620(1991). [10] C.A. Hamilton, S.D. Jackson, G.J. Kelly, Solid base catalysts and combined solid base hydrogenation catalysts for the aldol condensation of branched and linear aldehydes, Appl. Catal. A Gen. 263(1) (2004) 63-70. [11] L. Cui, H.Q. Lv, Z.F. Wang, J.S. Yao, Z. Li, L J. Dong, L.B. Hou, Application of a solid base catalyst for aldol condensation reaction, China Pat., 102019177A (2011). [12] B. Su, W.Z. Lang, Q.Y. Zeng, X.W. Liu, J.C. Yang, Y.J. Guo, Preparation of organic functionalized mesoporous catalysts and their applications to the self-condensation reaction of n-butanal to 2-ethylhexenal, Chin. J. Process. Eng. s445-446(6) (2010) 180-186. [13] F.M. Kerton, Y. Liu, K.W. Omari, K. Hawboldt, Green chemistry and the ocean-based biorefinery, Green Chem. 15(4) (2013) 860-871. [14] N. Yan, X. Chen, Sustainability:Don't waste seafood waste, Nature 524(7564) (2015) 155-157. [15] L. Jia, X. Liu, Y. Qiao, C.M. Pedersen, Z. Zhang, H. Ge, X. Wen, X. Wen, Y. Wang, Mechanism of the self-condensation of GlcNH2:Insights from in situ NMR spectroscopy and DFT study, Appl. Catal. B Environ. 202(2017) 420-429. [16] L. Jia, Z. Zhang, Y. Qiao, C.M. Pedersen, H. Ge, Z. Wei, T. Deng, J. Ren, X. Liu, Y. Wang, X. Hou, Product distribution control for glucosamine condensation:Nuclear magnetic resonance (NMR) investigation substantiated by density functional calculations, Ind. Eng. Chem. Res. 56(11) (2017) 2925-2934. [17] Y. Wang, C.M. Pedersen, T. Deng, Y. Qiao, X. Hou, Direct conversion of chitin biomass to 5-hydroxymethylfurfural in concentrated ZnCl2 aqueous solution, Bioresour. Technol. 143(2013) 384-390. [18] H. Kayser, C.R. Müller, C.A. García-González, Dried chitosan-gels as organocatalysts for the production of biomass-derived platform chemicals, Appl. Catal. A Gen. 445(2012) 180. [19] P.K. Sahu, P.K. Sahu, S.K. Gupta, D.D. Agarwal, Chitosan:An efficient, reusable, and biodegradable catalyst for green synthesis of heterocycles, Ind. Eng. Chem. Res. 53(6) (2014) 2085-2091. [20] K.R. Reddy, K. Rajgopal, C.U. Maheswari, M.L. Kantam, Chitosan hydrogel:A green and recyclable biopolymer catalyst for aldol and Knoevenagel reactions, New J. Chem. 30(2006) 1549-1552. [21] A. Ricci, L. Bernardi, C. Gioia, S. Vierucci, M. Robitzer, F. Quignard, Chitosan aerogel:A recyclable, heterogeneous organocatalyst for the asymmetric direct aldol reaction in water, Chem. Commun. 46(34) (2010) 6288-6290. [22] S. Shylesh, D. Hanna, J. Gomes, C.G. Canlas, M. Headgordon, A.T. Bell, The role of hydroxyl group acidity on the activity of silica-supported secondary amines for the self-condensation of n-butanal, ChemSusChem. 8(3) (2014) 466-472. [23] S. Lee, A. Varma, Kinetic study of biphasic aldol condensation of n-butyraldehyde using stirred cell, Chem. Eng. Sci. 104(50) (2013) 619-629. [24] W.D. Zhu, A.N. Ko, J. Chin, Vapor-phase aldolization of n-butyraldehyde to 2-ethyl-2-hexenal over solid-base catalysts, Chem. Soc. 47(6) (2000) 1237-1242. [25] X.L. Zhang, H.L. An, H.Q. Zhang, X.Q. Zhao, Y.J. Wang, n-Butyraldehyde selfcondensation catalyzed by sulfonic acid functionalized ionic liquids, Ind. Eng. Chem. Res. 53(43) (2014) 16707-16714. [26] C. Xiong, N. Liang, H.L. An, X.Q. Zhao, Y.J. Wang, n-Butyraldehyde self-condensation catalyzed by Ce-modified γ-Al2O3, RSC Adv. 5(125) (2015) 103523-103533. [27] C.N. Chen, Self-Condensation of N-Butyraldehyde to 2-Ethyl-2-Hexenal over H4SiW12O40/SiO2 Catalyst, M. S. Thesis Hebei University of Technology, Tianjin, 2010. [28] O. Levenspiel, Chemical Reaction Engineering, Wiley, New York, 1972. |
[1] | Ling Meng, Xia Gui, Zhi Yun. Static and dynamic studies of adsorption by four macroporous resins to enrich oridonin from Rabdosia rubescens [J]. Chinese Journal of Chemical Engineering, 2021, 32(4): 151-158. |
[2] | Zoya Zaheer, Ekram Yousif Danish, Samia A. Kosa. 2-Hydroxy-1, 4-napthoquinone solubilization, thermodynamics and adsorption kinetics with surfactant [J]. Chinese Journal of Chemical Engineering, 2021, 32(4): 212-223. |
[3] | Yudong Shen, Hao Liang, Zuwei Liao, Binbo Jiang, Jingdai Wang, Yongrong Yang, Minggang Li, Yibin Luo, Xingtian Shu. Pore plugging effects on the performance of ZSM-5 catalyst in MTP reaction using a discrete model [J]. Chinese Journal of Chemical Engineering, 2021, 32(4): 253-263. |
[4] | Abdul Samad, Muhammad Imran Din, Mahmood Ahmed, Saghir Ahmad. Synthesis of zinc oxide nanoparticles reinforced clay and their applications for removal of Pb (II) ions from aqueous media [J]. Chinese Journal of Chemical Engineering, 2021, 32(4): 454-461. |
[5] | Anrong Zeng, Yangtao Wang, Dajun Li, Juedong Guo, Qiaowen Chen. Preparation and antibacterial properties of polycaprolactone/quaternized chitosan blends [J]. Chinese Journal of Chemical Engineering, 2021, 32(4): 462-471. |
[6] | Changjie Lu, Weiqiang Tang, Zijiang Dou, Peng Xie, Xiaofei Xu, Shuangliang Zhao. A reaction density functional theory study of solvent effects on keto-enol tautomerism and isomerization in pyruvic acid [J]. Chinese Journal of Chemical Engineering, 2021, 29(3): 10-16. |
[7] | Xu Tang, Hongguang Zhang, Zhenjiang Guo, Xianren Zhang, Jing Li, Dapeng Cao. Multiplicity of thermodynamic states of van der Waals gas in nanobubbles [J]. Chinese Journal of Chemical Engineering, 2021, 29(3): 26-32. |
[8] | Jianglong Du, Haolan Tao, Jie Yang, Cheng Lian, Sen Lin, Honglai Liu. Understanding electrokinetic thermodynamics in nanochannels [J]. Chinese Journal of Chemical Engineering, 2021, 29(3): 33-41. |
[9] | Shanshan Wang, Liangliang Huang, Yumeng Zhang, Licheng Li, Xiaohua Lu. A mini-review on the modeling of volatile organic compound adsorption in activated carbons: Equilibrium, dynamics, and heat effects [J]. Chinese Journal of Chemical Engineering, 2021, 29(3): 153-163. |
[10] | Jianye Xia, Guan Wang, Meng Fan, Min Chen, Zeyu Wang, Yingping Zhuang. Understanding the scale-up of fermentation processes from the viewpoint of the flow field in bioreactors and the physiological response of strains [J]. Chinese Journal of Chemical Engineering, 2021, 29(2): 178-184. |
[11] | Aleksandra Perović, Mihajlo Z. Stanković, Vlada B. Veljković, Milan D. Kostić, Olivera S. Stamenković. A further study of the kinetics and optimization of the essential oil hydrodistillation from lavender flowers [J]. Chinese Journal of Chemical Engineering, 2021, 29(1): 126-130. |
[12] | S. I. Moussa, M. M. S. Ali, Reda R. Sheha. The performance of activated carbon/NiFe2O4 magnetic composite to retain heavy metal ions from aqueous solution [J]. Chinese Journal of Chemical Engineering, 2021, 29(1): 135-145. |
[13] | Saeideh Dermanaki Farahani, Javad Zolgharnein. Multivariate optimization of high removal of lead(II) using an efficient synthesized Ni-based metal-organic framework adsorbent [J]. Chinese Journal of Chemical Engineering, 2021, 29(1): 146-153. |
[14] | Fangjie Lu, Dong Xu, Yusheng Lu, Bin Dai, Mingyuan Zhu. High nitrogen carbon material with rich defects as a highly efficient metal-free catalyst for excellent catalytic performance of acetylene hydrochlorination [J]. Chinese Journal of Chemical Engineering, 2021, 29(1): 196-203. |
[15] | Kening Sun, Xixi Ma, Ruijun Hou. Upgrading Siberian (Russia) crude oil by hydrodesulfurization: Kinetic parameter estimation in a trickle-bed reactor [J]. Chinese Journal of Chemical Engineering, 2021, 29(1): 212-220. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||