1 Lombardi, L., “Life cycle assessment comparison of technical solutions for CO2 emissions reduction in power generation”, Energy Convers. Manag., 44 (1), 93-108 (2003). 2 Roberta, Q., Sierra, P., “The energy-climate challenge: Recent trends in CO2 emissions from fuel combustion”, Energy Policy, 35 (11), 5938-5952 (2007). 3 Suda, T., Masuko, K., Sato, J., Yamamoto, A., Okazaki, K., “Effect of carbon dioxide on flame propagation of pulverized coal clouds in CO2/O2 combustion”, Fuel, 86 (12-13), 2008-2015 (2007). 4 Okumura, Y., Zhang, J., Eddings, E.G., Wendt, J.L., “Effect of O2/CO2 ratio on fuel-NOx formation in oxy-coal combustion”, J. Envir. Eng., 5 (2), 417-430 (2010). 5 James, H., Larissa, N., “Soot climate forcing via snow and ice albedos”, Proceedings of The National Academy of Sciences, 101 (2), 423-428 (2004). 6 Appel, H., Bockhorn, F., “Kinetic modeling of soot formation with detailed chemistry and physics: Laminar premixed flames of C2 hydrocarbons”, Combust. Flame, 121 (1-2), 122-136 (2000). 7 Mazas, A.N., Lacoste, D.A., Schuller, T., “Experimental and numerical investigation on the laminar flame speed of CH4/O2 mixtures diluted with CO2 and H2O”, In: Proceedings of ASME Turbo Expo 2010: Power for Land, Sea and Air, Glasgow, UK, GT2010-22512 (2010). 8 Homann, K.H., Wagner, H.G., “Some new aspects of the mechanism of carbon formation in premixed flames”, Proc. Combust. Inst., 11 (1), 371-385 (1967). 9 Calcote, H.F, “Mechanisms of soot nucleation in flames-A critical review”, Combust. Flame, 42, 215-242 (1981). 10 Haynes, S., Wagner, H.G., “Soot formation”, Prog. Energy. Combust. Sci., 7 (4), 229-273 (1981). 11 Richter, H., Howard, J.B., “Formation of polycyclic aromatic hydrocarbons and their growth to soot—A review of chemical reaction pathways”, Prog. Energy. Combust. Sci., 26 (4-6), 565-608 (2000). 12 Howard, J.B., “Carbon addition and oxidation reactions in heterogeneous combustion and soot formation,” Proc. Combust. Inst., 23 (1), 1107-1127 (1991). 13 Frenklach, M., “Reaction mechanism of soot formation in flames”, J. Phys. Chem., 4, 2027-2037 (2002). 14 Michael, B., Michael, F., “Detailed kinetic modeling of soot aggregate formation in laminar premixed flames”, Combust. Flame, 140 (1-2), 130-145 (2005). 15 Kronholm, D.F., Howard, J.B., “Analysis of soot surface growth pathways using published plug-flow reactor data with new particle size distribution measurements and published premixed flame data”, Proc. Combust. Inst., 28, 2555-2561 (2000). 16 Henning, R., Silvia, G., William, H.G., Jack, B.H., “Detailed modeling of PAH and soot formation in a laminar premixed benzene/oxygen/argon low-pressure flame”, Proc. Combust. Inst., 30 (1), 1397-1405 (2005). 17 Dobbins, R.A., Fletcher, R.A., Chang, H.C., “The evolution of soot precursor particles in a diffusion flame”, Combust. Flame, 115 (3), 285-298 (1998). 18 Michael, F., David, W.C., William, C.G., Stephen, E.S., “Detailed kinetic modeling of soot formation in shock-tube pyrolysis of acetylene”, Proc. Combust. Inst., 20, 887-901 (1984). 19 Michael, F., David, W.C., William, C.G., Stephen, E.S., “Effect of fuel structure on pathways to soot”, Proc. Combust. Inst., 21, 1067-1076 (1986).20 Miller, J.A., Melius, C.F., “Kinetic and thermodynamic issues in the formation of aromatic compounds in flames of aliphatic fuels”, Combust. Flame, 91 (1), 21-39 (1992). |