1 Anand, R., Maheshwari, R., Core, K.U., Chumbhale, V.R., “Selective alkylation of catechol with t-butyl alcohol over HY and modified HY zeolites”, Catal. Commun., 3, 321-326 (2002). 2 Bordoloi, A., Devassy, B.M., Niphadkar, P.S., Joshi, P.N., Halligudi, S.B., “Shape selective synthesis of long-chain linear alkyl benzene (LAB) with AlMCM-41/Beta zeolite composite catalyst”, J. Mol. Catal. A Chem., 253, 239-244 (2006). 3 Clark, J.H., Monks, G.L., Nightingale, D.J., Price, P.M., White, J.F., “A new solid acid-based route to linear alkylbenzenes”, J. Catal., 193, 348-350 (2000). 4 Fu, Y., Baba, T., Ono, Y., “Vapor-phase reactions of catechol with dimethyl carbonate. Part I. o-methylation of catechol over alumina”, Appl. Catal. A Gen., 166, 419-424 (1998). 5 Zhu, X., Li, X., Jia, M., Liu, G., Zhang, W., Jiang, D., “Vapour-phase selective o-methylation of catechol with methanol over Ti-containing aluminium phosphate catalysts”, Appl. Catal. A Gen., 282, 155-161 (2005). 6 Zhu, X., Li, X., Zou, X., Wang, Y., Jia, M., Zhang, W., “Supported ammonium metatungstate as highly efficient catalysts for the vapour- phase o-methylation of catechol with methanol”, Catal. Commun., 7, 579-582 (2006). 7 Auroux, A., Monaci, R., Rombi, E., Solinas, V., Sorrentino, A., Santacesaria, E., “Acid sites investigation of simple and mixed oxides by TPD and microcalorimetric techniques”, Thermochim. Acta, 379, 227-231 (2001). 8 Benaliouche, F., Boucheffa, Y., Ayrault, P., Mignard, S., Magnoux, P., “NH3-TPD and FTIR spectroscopy of pyridine adsorption studies for characterization of Ag- and Cu-exchanged X zeolites”, Micropor. Mesopor. Mat., 111, 80-88 (2008). 9 Castellón, E.R., López, A.J., Torres, P.M., Jones, D.J., Roziere, J., Trombetta, M., Busca, G., Lenarda, M., Storaro, L., “Textural and structural properties and surface acidity characterization of mesoporous silica-zirconia molecular sieves”, J. Solid State Chem., 175, 159-169 (2003). 10 Corma, A., “From microporous to mesoporous molecular sieve materials and their use in catalysis”, Chem. Rev., 97, 2373-2420 (1997). 11 Kalita, P., Gupta, N.M., Kumar, R., “Synergistic role of acid sites in the Ce-enhanced activity of mesoporous Ce-Al-MCM-41 catalysts in alkylation reactions: FTIR and TPD-ammonia studies”, J. Catal., 245, 338-347 (2007). 12 Katada, N., Igi, H., Kim, J.H., Niwa, M., “Determination of the acidic properties of zeolite by theoretical analysis of temperature-programmed desorption of ammonia based on adsorption equilibrium”, J. Phys. Chem. B, 101, 5969-5977 (1997). 13 Martins, G.V.A., Berlier, G., Bisio, C., Coluccia, S., Pastore, H.O., Marchese, L., “Quantification of Br?nsted acid sites in microporous catalysts by a combined FTIR and NH3-TPD study”, J. Phys. Chem. C, 112, 7193-7200 (2008). 14 Posey, K.L., Viegas, M.G., Boucher, A.J., Wang, C., Stambaugh, K.R., Smith, M.M., Carpenter, B.G., Bridges, B.L., Baker, S.E., Perry, D.A., “Surface-enhanced vibrational and TPD study of nitroaniline isomers”, J. Phys. Chem. C, 111, 12352-12360 (2007). 15 Trombetta, M., Busca, G., Lenarda, M., Storaro, L., Ganzerla, R., Piovesan, L., López, A.J., Rodríguez, M.A., Castellón, E.R., “Solid acid catalysts from clays: Evaluation of surface acidity of mono- and bi-pillared smectites by FT-IR spectroscopy measurements, NH3-TPD and catalytic tests”, Appl. Catal. A Gen., 193, 55-69 (2000). 16 Kanervo, J.M., Reinikainen, K.M., Krause, A.O.I., “Kinetic analysis of temperature-programmed desorption”, Appl. Catal. A Gen., 258, 135-144 (2004). 17 Guo, Y., Sakurai, M., Kameyama, H., “Temperature programmed desorption/surface-reaction study of an anodic alumina supported Ag catalyst for selective catalytic reduction of nitric oxide with propene”, Appl. Catal. B Environ., 79, 382-393 (2008). 18 Sivasankar, N., Vasudevan, S., “Temperature-programmed desorption and infrared spectroscopic studies of benzene adsorption in zeolite ZSM-5”, J. Phys. Chem. B, 108, 11585-11590 (2004). 19 Arena, F., Dario, R., Parmaliana, A., “A characterization study of the surface acidity of solid catalysts by temperature programmed methods”, Appl. Catal. A Gen., 170, 127-137 (1998). 20 Busca, G., “The surface acidity of solid oxides and its characterization by IR spectroscopic methods. An attempt at systematization”, Phys. Chem. Chem. Phys., 1, 723-736 (1999). 21 Davydov, A., Molecular Spectroscopy of Oxide Catalyst Surfaces, Wiley, London (2003). 22 Brazdil, J.F., Ebner, A.M., Cavalcanti, F.A.P., “Rutile vanadium antimonates: A new class of catalysts for selective reduction of NO with ammonia”, Appl. Catal. A Gen., 165, 51-55 (1997). 23 Costa, C., Dzikh, I.P., Lopes, J.M., Lemos, F., Ribeiro, F.R., “Activity–acidity relationship in zeolite ZSM-5. Application of brönsted-type equations”, J. Mol. Catal. A Chem., 154, 193-201 (2000). 24 Kanervo, J.M., Keskitalo, T.J., Slioor, R.I., Krause, A.O.I., “Temperature- programmed desorption as a tool to extract quantitative kinetic or energetic information for porous catalysts”, J. Catal., 238, 382-393 (2006). 25 Barrie, P.J., “Analysis of temperature programmed desorption (TPD) data for the characterisation of catalysts containing a distribution of adsorption sites”, Phys. Chem. Chem. Phys., 10, 1688-1696 (2008). 26 Panczyk, T., Gac,W., Panczyk, M., Borowiecki, T., Rudzinski, W., “On the equilibrium nature of thermodesorption processes. TPD-NH3 studied of surface acidity of Ni/MgO-Al2O3 catalysts”, Langmuir, 22, 6613-6621 (2006). 27 Liu, L.C., Zhao, L.F., Sun, H., “Simulation of NH3 temperature-programmed desorption curves using an ab initio force field”, J. Phys. Chem. C, 113, 16051-16057 (2009). 28 Borges, P., Pinto, R.R., Lemos, M., Lemos, F., Védrine, J.C., Derouane, E.G., Ribeiro, F.R., “Activity-acidity relationship for alkane cracking over zeolites: n-hexane cracking over HZSM-5”, J. Mol. Catal. A Chem., 229, 127-135 (2005). 29 Costa, C., Lopes, J.M., Lemos, F., Riberiro, F.R., “Activity-acidity relationship in zeolite Y: Part 2. Determination of the acid strength distribution by temperature programmed desorption of ammonia”, J. Mol. Catal. A Chem., 144, 221-231 (1999). 30 Heilbron, L., Dictionary of Organic Compounds, Science Press, Beijing (1966). (in Chinese) 31 Bai, Z.L., Chen, Q., Chen, S.Z., “Synthesis and catalytic oxidation performance of FeAPO-5 zeolite”, Journal of East China University of Science and Technology, 27, 597-600 (2001). (in Chinese) 32 Mollavali, M., Yaripour, F., Jam, S.M., Atashi, H., “Relationship between surface acidity and activity of solid-acid catalysts in vapour phase dehydration of methanol”, Fuel Process. Technol., 90, 1093-1098 (2009). 33 Yang, R.T., Long, R., Joel, P., “Adsorbent for dioxins: A new technique for sorbent screening for low-volatile organics”, Ind. Eng. Chem. Res., 38, 2726-2731 (1999). 34 Ren, J., Jin, Y.J., Zhao, Y.G., Zhou, J.L., “Study on deactivation kinetics of solid acid catalyst for alkylation reaction of benzene with long chain olefins”, Acta Petrolei Sinica (Petrol. Process Sec.), 17, 32-38 (2001). (in Chinese) 35 Hamzehlouyan, T., Kazemeini, M., Khorasheh, F., “Modeling of catalyst deactivation in zeolite-catalyzed alkylation of isobutene with 2-butene”, Chem. Eng. Sci., 65, 645-650 (2010). |