1 Li, P., Mi, J., Dally, B.B., Wang, F., Wang, L., Liu, Z., Chen, S., Zheng, C., “Progress and recent trend in MILD Combustion”, Sci. China Tech. Sci., 54 (2), 255-269 (2011). 2 Katsuki, M., Hasegawa, T., “The science and technology of combustion in highly preheated air”, Proc. Combust. Inst., 27 (2), 3135-3146 (1998). 3 Cavaliere, A., De, Joannon, M., “Mild combustion”, Prog. Energ. Combust., 30 (4), 329-366 (2004). 4 De Joannon, M., Langella, G., Beretta, F., Cavliere, A., Noviello, C., “Mild combustion: Process features and technological constrains”, Combust. Sci. Technol., 153 (1), 33-50 (2000). 5 Tsuji, H., Gupta, A., Hasegawa, T., Katsuki, M., Kishimoto, K., Morita, M., High Temperature Air Combustion: From Energy Conservation to Pollution Reduction, CRC Press, Florida (2003). 6 Szegö, G.G., Dally, B.B., Nathan, G.J., “Operational characteristics of a parallel jet MILD combustion burner system”, Combust. Flame, 156 (2), 429-438 (2009). 7 Mi, J., Li, P., Dally, B.B., Craig, R.A., Wang, F., “Importance of initial momentum rate and air-fuel premixing on moderate or intense low oxygen dilution (MILD) combustion in a recuperative furnace”, Energy Fuels, 23 (11), 5349-5356 (2009). 8 Mi, J., Li, P., Zheng, C., “Numerical simulations of flameless premixed combustion in a recuperative furnace”, Chin. J. Chem. Eng., 18 (1), 10-17 (2010). 9 Li, Y., Qi, H., Yuan, J., “Numerical Analysis of high temperature combustion of methane”, Journal of Engineering Thermophysics, 22 (2), 257-260 (2001). (in Chinese) 10 Li, P., Mi, J., Dally, B.B., Craig, R.A., Wang, F., “Premixed moderate or intense low-oxygen dilution (MILD) combustion from a single jet burner in a laboratory-scale furnace”, Energy Fuels, 25 (7), 2782-2793 (2011). 11 Li, P., Mi, J., Wang, F., “Effect of equivalence ratio and reactants mixing pattern on flameless combustion”, Proc. CSEE, 31 (5), 20-27 (2011). (in Chinese) 12 Li, P., Dally, B.B., Mi, J., Wang, F., “MILD oxy-combustion of gaseous fuels in a laboratory-scale furnace”, Combust. Flame, 160 (5), 933-946 (2013). 13 Mi, J., Li, P., Zheng, C., “Impact of injection conditions on flame characteristics from a parallel multi-jet burner”, Energy, 36 (11), 6583-6595 (2011). 14 Mi, J., Wang, F., Li, P., Dally, B.B., “Modified vitiation by operational parameters in a MILD combustion furnace”, Energy Fuels, 26 (1), 265-277 (2012). 15 Dally, B.B., Karpetis, A.N., Barlow, R.S., “Structure of turbulent non-premixed jet flames in a diluted hot coflow”, Proc. Combust. Inst., 29 (1), 1147-1154 (2002). 16 Christo, F.C., Dally, B.B., “Modeling turbulent reacting jets issuing into a hot and diluted coflow”, Combust. Flame, 142, 117-129 (2005). 17 Mardani, A., Tabejamaat, S., Ghamari, M., “Numerical study of influence of molecular diffusion in the MILD combustion regime”, Combust. Theor. Model., 14, 747-774 (2010). 18 Chui, E.H., Raithby, G.D., “Computation of radiant heat transfer on a nonorthogonal mesh using the finite-volume method”, Numer. Heat Transfer B Fund., 23, 269-288 (1993). 19 Magnussen, B.F., Hjertager, B.H., “On mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion”, Symp. (Int.) Combust., 16 (1), 719-729 (1977). 20 Smith, G.P., Golden, D.M., Frenklach, M., Moriarty, N.W., Eiteneer, B., Goldenberg, M., Bownan, C.T., Hanson, R.K., Song, S., Gardiner, W.C, Lissianski, Jr.V.V., Qin, Z., “GRI-Mech 3.0”, http://www.me.berkeley.edu/gri_mech/. 21 Lauder, B.E., Spalding, D.B., Lectures in Mathematical Models of Turbulence, Academic Press, London (1972). 22 Galletti, C., Parente, A., Derudi, M., Rota, R., Tognotti, G., “Numerical and experimental analysis of NO emissions from a lab-scale burner fed with hydrogen-enriched fuels and operating in MILD combustion”, Int. J. Hydrogen Energy, 34 (19), 8339-8351 (2009). 23 Parente, A., Galletti, C., Tognotti, L., “Effect of the combustion model and kinetic mechanism on the MILD combustion in an industrial burner fed with hydrogen enriched fuels”, Intl. J. Hydrogen Energy, 33 (24), 7553-7564 (2008). 24 Pope, S.B., “Computationally efficient implementation of combustion chemistry using in situ adaptive tabulation”, Combust. Theor. Model, 1, 41-63 (1997). 25 Bilger, R.W., Starner, S.H., Kee, R.J., “On reduced mechanisms for methane-air combustion in nonpremixed ?ames”, Combust. Flame, 80, 135-149 (1990). 26 Bombach, R., Käppeli, B., “Simultaneous visualisation of transient species in ?ames by planar-laser-induced ?uorescence using a single laser system”, Appl. Phys. B., 68 (2), 251-255 (1999). 27 Medwel, P.R., “Laser diagnostics in MILD combustion”, Ph.D. Thesis, University of Adelaide, Australia (2007). 28 Gardiner, J.W.C., Combustion Chemistry, Springer-Verlag, New York (1984). |