1 Hopke, P.K., “The evolution of chemometrics”, Analytica Chimica Acta., 500, 365-377 (2003).2 Abollino, O., Malandrino, M., Giacomino, A., Mentasti, E., “The role of chemometrics in single and sequential extraction assays: A review (I) Extraction procedures, uni- and bivariate techniques and multivariate variable reduction techniques for pattern recognition”, Analytica Chimica Acta., 688, 104-121 (2011).3 Heberger, K., “Chemometrics in Hungary (the last 10 years)”, Chemometrics and Intelligent Laboratory Systems, 72, 115-122 (2004).4 Lehmann, E.L., Casella, G., Theory of Point Estimation, 2nd edition, Springer-Verlag Inc., New York (1998).5 Massy, W.F., “Principal components regression in exploratory statistical research”, American Statiatical Association Journal, 60, 234-256 (1965).6 Rosipal, R., Krämer, N., Overview and Recent Advances in Partial Least Squares, Springer-Verlag Berlin Inc., Germany, 34-51 (2006).7 Hoerl, A.E., Kennard, R.W., “Ridge regression: Application to nonorthogonal problems”, Technometrics, 12, 69-82 (1970).8 Hoerl, A.E., Kennard, R.W., “Ridge regression: Biased estimation for nonorthogonal problems”, Technometrics, 12, 55-67 (1970).9 Sbarbaro, D., Ascencioa, P., Espinozab, P., Mujicab, F., Cortes, G., “Adaptive soft-sensors for on-line particle size estimation in wet grinding circuits”, Control Engineering Practice, 16, 171–178 (2008).10 Kadleca, P., Grbic, R., Gabrys, B., “Review of adaptation mechanisms for data-driven soft sensors”, Computers and Chemical Engineering, 35, 1-24 (2011).11 Stein, C., “Inadmissibility of the usual estimator for the mean of a multivariate distribution,” Third Berkeley Symp. Math. Statist. Prob., 1, 197-206 (1956).12 Xie, L., Zhang, J.M., Wang, S.Q., “Investigation of dynamic multivariate chemical process monitoring”, Chin. J. Chem. Eng., 14 (5), 559-568 (2006).13 Zhao, X., Yan, W.W., Shao, H.H., “Monitoring and fault diagnosis for batch process based on feature extract in fisher subspace”, Chin. J. Chem. Eng., 14 (6), 759-764 (2006).14 Ye, L.B., Shi, X.R., Liang, J., “A multi-level approach for complex fault isolation based on structured residuals”, Chin. J. Chem. Eng., 19 (3), 462-472 (2011).15 Wold, S., Sjostrom, M., Eriksson, L., “PLS-regression: A basic tool of chemometrics”, Chemometrics and Intelligent Laboratory Systems, 58, 109-130 (2001).16 Wold, S., Sjostrom, M., “Chemometrics, present and future success”, Chemometrics and Intelligent Laboratory Systems, 44, 3-14 (1998).17 Wold, H., “Soft modeling by latent variables; the nonlinear iterative partial least-squares approach”, In: Perspectives in Probability and Statistics, Gani, J., ed., Academic Press, London (1975).18 Wold, H., Ruhe, A., Wold, H., Dunn, W., “The collinearity problem in regression. The PLS approach to generalized inverses”, SIAM Journal of Science Statistics and Computers, 5, 735-743 (1984).19 Wold, S., Martens, H., Wold, H., “The multivariate calibration problem in chemistry solved by the PLS method”, Matrix Pencils Lecture Notes in Mathematics, 973, 286-293 (1983).20 Ruscio, D.D., “A weighted view on the partial least-squares algorithm”, Automatica, 36, 831-850 (2000).21 Peng, J.T., Peng, S.L., Hu, Y., “Partial least squares and random sample consensus in outlier detection”, Analytica Chimica Acta., 719, 24-29 (2012).22 Fu, Y.F., Su, H.Y., Chu, J., “MIMO soft-sensor model of nutrient content for compound fertilizer based on hybrid modeling technique”, Chin. J. Chem. Eng., 15 (4), 554-559 (2007).23 Godoy, J.L., Minari, R.J., Vega, J.R., Marchetti, J.L., “Multivariate statistical monitoring of an industrial SBR process. Soft-sensor for production and rubber quality”, Chemometrics and Intelligent Laboratory Systems, 107, 258-268 (2011).24 Sundberg, R., “Aspects of statistical regression in Sensometrics”, Food Quality and Preference, 11, 17-26 (2000).25 Hu, B., Zheng, P.Y., Liang, J., “Multi-loop internal model controller design based on a dynamic PLS framework”, Chin. J. Chem. Eng., 18 (2), 277-285 (2010).26 Haswell, S.J., Walmsley, A.D., “Chemometrics: The issues of measurement and modelling”, Analytica Chimica Acta., 400, 399-412 (1999).27 Frank, I.E., Friedman, J.H., “A statistical view of some chemometrics regression tools”, Technometrics, 35 (2), 109-135 (1993).28 Aldrin, M., “Length modified ridge regression”, Computational Statistics & Data analysis, 25, 377-398 (1997).29 Hawkins, D.M., Yin, X.R., “A faster algorithm for ridge regression of reduced rank data”, Computational Statistics & Data Analysis, 40, 253-262 (2002).30 Xiong, L., Liang, J., Qian, J.X., “Multivariate statistical process monitoring of an industrial polypropylene catalyzer reactor with component analysis and kernel density estimation”, Chin. J. Chem. Eng., 15 (4), 524-532 (2007).31 Hoerl, A.E., “Application of ridge analysis to regression problems”, Chemical Engineering Progress, 68, 54-59 (1962).32 Rao, C.R., Toutenburg, H., Linear Models: Least Squares and Alternatives, Springer-Verlag New York Inc., USA (1999).33 Wencheko, E., “Estimation of the signal-to-noise in the linear regression model”, Statistical Papers, 41, 327-343 (2000). |