[1] H.E. Vollmar, C.U. Maier, C. Nolscher, T. Merklein, M. Poppinger, Innovative concepts for the coproduction of electricity and syngas with solid oxide fuel cells, J. Power Sources 86 (2000) 90-97.[2] A.L. Dicks, R.G. Fellows, C.M. Mescal, C. Seymour, A study of SOFC-PEM hybrid systems, J. Power Sources 86 (2000) 501-506.[3] M. Yokoo, T. Take, Simulation analysis of a system combining solid oxide and polymer electrolyte fuel cells, J. Power Sources 137 (2004) 206-215.[4] M. Yokoo, K.Watanabe, M. Arakawa, Y. Yamazaki, The effect of fuel feeding method on performance of SOFC-PEFC system, J. Power Sources 159 (2006) 836-845.[5] M. Yokoo, K.Watanabe, M. Arakawa, Y. Yamazaki, Numerical evaluation of a parallel fuel feeding SOFC-PEFC system using seal-less planar SOFC stack, J. Power Sources 153 (2006) 18-28.[6] M. Yokoo, K. Watanabe, M. Arakawa, Y. Yamazaki, Influence of current densities in SOFC-PEFC combined system, J. Power Sources 163 (2007) 892-899.[7] K. Subramanyan, U.M. Diwekar, A. Goyal, Multi-objective optimization for hybrid fuel cells power system under uncertainty, J. Power Sources 132 (2004) 99-112.[8] K. Subramanyan, U.M. Diwekar, Optimizing model complexity with application to fuel cell based power systems, Chem. Eng. Process. 46 (2007) 1116-1128.[9] Y. Fu, U.M. Diwekar, Anefficient sampling approach to multi-objective optimization, Ann. Oper. Res. 132 (2004) 109-134.[10] Y. Fu, U.M. Diwekar, D. Young, H. Cabezas, Process design for the environment: A multi-objective framework under uncertainty, Clean Techn. Environ. Policy 2 (2000) 92-107.[11] C.L. Yaws, Chemical Properties Handbook, McGraw Hill, New York, USA, 1999.[12] S.C. Singhal, High Temperature Solid Oxide Fuel Cells: Fundamental, Design and Applications, Academic Press, New York, USA, 2003.[13] M. Andersson, J. Yuan, B. Sunden, SOFC modeling considering electrochemical reactions at the active three phase boundaries, Int. J. Heat Mass Transfer 55 (2012) 773-788.[14] J.S. Benjamin, F.E. Thomas, Dynamic modeling, simulation, and MIMO predictive control of a tubular solid oxide fuel cell, J. Process Control 22 (2012) 1502-1520.[15] S. Motahar, A.A. Alemrajabi, Exergy based performance analysis of a solid oxide fuel cell and steam injected gas turbine hybrid power system, Int. J. Hydrogen Energy 34 (2009) 2396-2407.[16] H. Xiaowei, A. Kromp, Cooling of a diesel reformate fuelled solid oxide fuel cell by internal reforming of methane: A modelling study, Chin. J. Chem. Eng. 21 (3) (2013) 324-331.[17] L.Q. Duan, Y.P. Yan, B.B. He, G. Xu, Study on a novel solid oxide fuel cell/gas turbine hybrid cycle system with CO2 capture, Int. J. Energy Res. 36 (2012) 139-152.[18] A. Odukoya, J.A. Carretero, B.V. Reddy, Thermodynamic optimization of solid oxide fuel cell-based combined cycle cogeneration plant, Int. J. Energy Res. 35 (2011) 1399-1411.[19] F. Calise,M.D. Accadia, A. Palombo, L. Vanoli, Simulation and exergy analysis of a hybrid solid oxide fuel (SOFC)-gas turbine system, Energy 31 (2006) 3278-3299.[20] F. Calise, M.D. Accadia, L. Vanoli, M.R. von Spakovsky, Single-level optimization of a hybrid SOFC-GT power plant, J. Power Sources 159 (2006) 1169-1185.[21] N. Meng, K.H.L. Michael, Y.C.L. Dennis, Parametric study of solid oxide fuel cell performance, Energy Convers. Manag. 48 (2007) 1525-1535.[22] D.F. Cheddie, Interation of a solid oxide fuel cell into a 10 MW gas turbine power plant, Energies 3 (2010) 754-769.[23] F. Zenith, F. Seland, O.E. Kongstein, R. Tunole, Control-oriented modeling and experimental study of the transient response of a high-temperature polymer fuel cell, J. Power Sources 162 (2006) 218-227.[24] C. Spiegel, PEM Fuel Cell Modeling and Simulation Using MATLAB, Elsevier, New York, USA, 2008.[25] J.Wishart, Z. Dong,M. Secanell, Optimization of a PEM fuel cell system based on empirical data and a generalized electrochemical semi-empirical model, J. Power Sources 161 (2006) 1041-1055.[26] W.M. Kays, A.L. London, Compact Heat Exchangers, Krieger Publishing Company, Florida, USA, 1998.[27] N.G. Georgopoulos, Application of a Decomposition Strategy to the Optimal Synthesis/Design and Operation of a Fuel Cell Based Total Energy System, Ph.D. Thesis Virginia Polytechnic Institute and State University, USA, 2002.[28] K. Kim, Dynamic Proton Exchange Membrane Fuel Cell System Synthesis/Design and Operation/Control Optimization under Uncertainty, Ph.D. Thesis Virginia Polytechnic Institute and State University, USA, 2008.[29] D.F. Rancruel, Dynamic Synthesis/Design and Operation/Control Optimization Approach applied to a Solid Oxide Fuel Cell based Auxiliary Power Unit under Transient Conditions, Ph.D. Thesis Virginia Polytechnic Institute and State University, USA, 2005.[30] Energy information administration, “U.S. Natural Gas Prices”, http://www.eia. doe.gov (accessed on May 8, 2012).[31] Z. Feng, V.V. Anil, Dependence of polarization in anode-supported solid oxide fuel cells on various cell parameters, J. Power Sources 141 (2008) 79-95.[32] M. Ceraolo, C. Miulli, A. Pozio, Modeling static and dynamic behavior of proton exchange membrane fuel cells on the basis of electro-chemical description, J. Power Sources 113 (2003) 131-144.[33] J.M. Hammersley, Monte Carlo methods for solvingmultivariate problems, Ann. N. Y. Acad. Sci. 86 (1960) 844-874.[34] U.M. Diwekar, A novel sampling approach to combinatorial optimization under uncertainty, Comput. Optim. Appl. 24 (2003) 335-371.[35] C. Lemieux, Monte Carlo and Quasi-Monte Carlo Sampling, Springer, 2009.[36] J.R. Kalagnanam, U.M. Diwekar, An efficient sampling technique for off-line quality control, Technometrics 39 (1997) 308-319.[37] W. Murray, Sequential quadratic programming methods for large-scale problems, Comput. Optim. Appl. 7 (1997) 127-142.[38] P.E. Gill, W. Murray, M.A. Saunders, SNOPT: an SQP algorithm for large-scale constrained optimization, Soc. Ind. Appl. Math. 47 (2005) 99-131. |