[1] W.G. Zhao, L.X. Zhang, X.M. Shao, Numerical simulation of cavitation flow under high pressure and temperature, J. Hydrodyn. 23 (3) (2011) 289-294.[2] R. Payri, J.M. Garcia, F.J. Salvador, Using spray momentum flux measurements to understand the influence of diesel nozzle geometry on spray characteristics, Fuel 84 (5) (2005) 551-561.[3] S. Shi, G. Wang, Numerical calculation of thermal effect on cavitation in cryogenic fluids, Chin. J. Mech. Eng. 25 (6) (2012) 1176-1183 (in Chinese).[4] H. Sun, B.F. Bai, J.J. YAN, et al., Single-jet spray mixing with a confined crossflow, Chin. J. Chem. Eng. 21 (1) (2013) 14-24.[5] C.V.K. Sarre, S.C. Kong, R.D. Reitz, Modeling the effects of injector nozzle geometry on diesel sprays, SAE Paper, 1999, pp. 1375-1388.[6] Z.X. He, W.J. Zhong, Q. Wang, An investigation of transient nature of the cavitating flow in injector nozzles, Appl. Therm. Eng. 54 (1) (2013) 56-64.[7] A. Sou, S. Hosokawa, A. Tomiyawa, Effects of cavitation in a nozzle on liquid jet atomization, Int. J. Heat Mass Transfer 50 (17-18) (2007) 3575-3582.[8] M.G. Giorgi, A. Ficarella, M. Tarantino, Evaluating cavitation regimes in an internal orifice at different temperatures using frequency analysis and visualization, Int. J. Heat Fluid Flow 39 (2013) 160-172.[9] M. Blessing, G. Konig, C. Kruger, Analysis of flow and cavitation phenomena in diesel injection nozzles and its effects on spray and mixture formation, SAE Paper, 2003, pp. 01-1358.[10] N. Tamaki, Effects of cavitation in a nozzle hole on atomization of spray and development of high-efficiency atomization enhancement nozzle, Proceedings the 11th International Conference on Liquid Atomization and Spray Systems, paper 083, Vail, America, 2009.[11] S.D. Safari, Effects of Cavitation on High-pressure Atomization(Ph.D. Thesis) California Univ., California, 2009.[12] R. Payri, F.J. Salvador, J. Gimeno, Study of cavitation phenomena based on a technique for visualizing bubbles in a liquid pressurized chamber, Int. J. Heat Fluid Flow 30 (4) (2009) 768-777.[13] J.M. Desantes, R. Payri, F.J. Salvador, Influence of cavitation phenomenon on primary break-up and spray behavior at stationary conditions, Fuel 89 (10) (2010) 3033-3041.[14] S. Som, A.I. Ramirez, D.E. Longman, Effect of nozzle orifice geometry on spray, combustion, and emission characteristics under diesel engine conditions, Fuel 90 (3) (2011) 1267-1276.[15] W. Yuan, G.H. Schnerr, Numerical simulation of two-phase flow in injection nozzles: interaction of cavitation and external jet formation, J. Fluids Eng. 125 (2003) 963-969.[16] H.K. Suh, C.S. Lee, Effect of cavitation in nozzle orifice on the diesel fuel atomization characteristics, Int. J. Heat Fluid Flow 29 (2008) 1001-1009.[17] L. Hadji, W. Schreiber, The stability of an inviscid liquid sheet containing vapor bubbles, J. Phys. Nat. Sci. 1 (2) (2007) 1-11.[18] Y.B. Zeng, C.F. Lee, An atomization model for flash boiling sprays, Combust. Sci. Technol. 169 (1) (2001) 45-67.[19] M. Lv, Z. Ning, K. Yan, The instability of vapor bubble growth within the diesel droplet under the condition of supercavitation, Adv. Mater. Res. 512-515 (2012) 477-480.[20] A. Mulemane, S. Subramaniyam, P.H. Lu, Comparing cavitation in diesel injectors based on different modeling approaches, SAE Paper, 2004, pp. 01-0027.[21] M. Jia, D. Hou, J. Li, A micro-variable circular orifice fuel injector for HCCIconventional engine combustion—part I numerical simulation of cavitation, SAE Paper, 2007, pp. 01-0249.[22] X. Wang, W.H. Su, A numerical study of cavitating flows in high-pressure diesel injection nozzle holes using a two-fluid model, Chin. Sci. Bull. 54 (10) (2009) 1655-1662.[23] C.J. Liu, B. Liang, S.W. Tang, et al., Effects of orifice orientation and gas-liquid flow pattern on initial bubble size, Chin. J. Chem. Eng. 21 (11) (2013) 1206-1215. |