[1] M. Cortie, A. Laguna, D. Thompson, Conference reports gold 2006 highlights of 4th international conference on the science, technology and industrial applications of gold 2006, Gold Bull. 39 (2006) 226-235. [2] K.I. Tanaka, K. Tamaru, A general rule in chemisorption of gases on metals, J. Catal. 2 (1963) 366-370. [3] G.J. Hutchings, Catalysis by gold, Catal. Today 100 (2005) 55-61. [4] E. van deer Lingen, Gold's other uses, The LBMA Precious Metals Conference, 2005, pp. 75-80. [5] W.A. Bone, R.V.Wheeler, The combination of hydrogen and oxygen in contact with hot surfaces, Phil. Trans. R. Soc. London 206 (1906) 1-67. [6] R.S. Yolles, B.J.Wood, H.Wise, Hydrogenation of alkenes on gold, J. Catal. 21 (1971) 66-69. [7] G.C. Bond, P.A. Sermon, G.Webb, D.A. Buchanan, P.B.Wells, Hydrogenation 550 over supported gold catalysts II, J. Chem. Soc. Chem. Commun. 13 (1973) 444b-445b. [8] G.C. Bond, P.A. Sermon, Gold catalysts for olefin hydrogenation transmutation of catalytic properties, Gold Bull. 6 (1973) 102-105. [9] M. Haruta, N. Yamada, T. Kobayashi, S. Iijima, Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide, J. Catal. 115 (1989) 301-309. [10] G.J. Hutchings, Catalysis: A golden future, Gold Bull. 29 (1996) 123-130. [11] L. Prati, M. Rossi, Gold on carbon as a new catalyst for selective liquid phase oxidation of diols, J. Catal. 176 (1998) 552-560. [12] A. Chatterjee, Y. Kawazoe, Application of the reactivity index to propose intra and intermolecular reactivity in metal cluster interaction over oxide surface, Mater. Trans. 48 (2007) 2152-2158. [13] A. Ken, Chemical Sabbatical Available, 2008, http://chemicalsabbatical.blogspot. com/2008/09/nano-gold-catalysts.html. [14] M. Georgy, V. Boucard, J.M.J. Campagne, Gold(III)-catalyzed nucleophilic substitution of propargylic alcohols, J. Am. Chem. Soc. 127 (2005) 14180-14181. [15] F.K. Alanazi, A.A. Radwan, I.A. Alsarra, Biopharmaceutical applications of nanogold, Saudi. Pharm. J. 18 (2010) 179-193. [16] C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartuli, J.S. Beck, Ordered mesoporous molecular sieves synthesized by a liquid crystal template mechanism, Nature 359 (1992) 710-712. [17] G. Glaspell, H.M.A. Hassan, A. Elzatahry, V. Abdalsayed, M.S. El-Shall, Nanocatalysis on supported oxides for CO oxidation, Top. Catal. 47 (2008) 22-31. [18] P. Yang, D. Zhao, D.I. Margolese, B.F. Chmelka, G.D. Stucky, Generalized syntheses of large-pore meosporous metal oxides with nanocrystalline walls, Nature 396 (1998) 152-154. [19] L. Prati, G.Martra, New gold catalysts for liquid phase oxidation, Gold Bull. 32 (1999) 96-101. [20] A. Sanchez, S. Abbet, U. Heiz,W.D. Schneider, H. Hakkinen, R.N. Barnett, U. Landman, When gold is not noble: nanoscale gold catalysts, J. Phys. Chem. A 103 (1999) 9573-9578. [21] M.A. Centeno, I. Carrizosa, J.A. Odriozola, Deposition-precipitation method to obtain supported gold catalysts: dependence of the acid-base properties of the support exemplified in the system TiO2-TiOxNy-TiN, Appl. Catal. A Gen. 246 (2003) 365-372. [22] M.S. Chen, D.W. Goodman, The structure of catalytically active Au on titania, Science 306 (2004) 252-255. [23] G.J. Hutchings, M.S. Hall, A.F. Carley, P. Landon, B.E. Solsona, C.J. Kiely, A. Herzing, M. Makkee, J.A. Moulijn, A. Overweg, J.C. Fierro-Gonzalez, J. Guzman, B.C. Gates, Role of gold cations in the oxidation of carbonmonoxide catalyzed by iron oxide-supported gold, J. Catal. 242 (2006) 71-81. [24] Z. Yan, S. Chinta, A.A.Mohamed, J.P. Fackler, D.W. Goodman, The role of F-centers in catalysis by Au supported on MgO, J. Am. Chem. Soc. 127 (2005) 1604-1605. [25] T.V. Prevenslik, Nanocatalysts by quantumelectrodynamics induced electromagnetic radiation, Chin. J. Catal. 29 (2008) 1073-1078. [26] Y. Yuan, A.P. Kozlova, K. Asakura, H.Wan, K. Tsai, Y. Iwasawa, Supported Au catalysts prepared from Au phosphine complexes and as-precipitated metal hydroxides: Characterization and low-temperature CO oxidation, J. Catal. 170 (1997) 191-199. [27] C. Mohr, H. Hofmeister, P. Claus, The influence of the real structure of gold catalysts in the partial hydrogenation of acrolein, J. Catal. 213 (2003) 86-94. [28] S.T. Qi, B.A. Cheney, R.Y. Zheng, W.W. Lonergan, W.T. Yu, J.G.G. Chen, The effects of oxide supports on the low temperature hydrogenation activity of acetone over Pt/Ni bimetallic catalysts on SiO2, γ-Al2O3 and TiO2, Appl. Catal. A Gen. 393 (2011) 44-49. [29] A. Primo, P. Concepcion, A. Corma, Synergy between themetal nanoparticles and the support for the hydrogenation of functionalized carboxylic acids to diols on Ru/TiO2, Chem. Commun. 47 (2011) 3613-3615. [30] K. Pattamakomsan, E. Ehret, F. Morfin, P. Gelin, Y. Jugnet, S. Prakash, J.C. Bertolini, J. Panpranot, F.J.C.S. Aires, Selective hydrogenation of 1,3-butadiene over Pd and Pd- Sn catalysts supported on different phases of alumina, Catal. Today 164 (2011) 28-33. [31] J. Fu, X.Y. Lu, P.E. Savage, Hydrothermal decarboxylation and hydrogenation of fatty acids over Pt/C, Chem. Sus. Chem. 4 (2011) 481-486. [32] G.C. Bond, C. Louis, D.T. Thompson, Catalysis by Gold, Catalytic Science Series, Imperial College Press, 2006. 244 [Chapter 9]. [33] L. Stobinski, L. Zommer, R. Dus,Molecular hydrogen interactionswith discontinuous and continuous thin gold films, Appl. Surf. Sci. 141 (1999) 319-325. [34] S. Lin, M. Vannice, Gold dispersed on TiO2 and SiO2: Adsorption properties and catalytic behavior in hydrogenation reactions, Catal. Lett. 10 (1991) 47-62. [35] E. Bus, J.T. Miller, J.A. van Bokhoven, Hydrogen chemisorption on Al2O3-supported gold catalysts, J. Phys. Chem. B 109 (2005) 14581-14587. [36] M. Boronat, F. Lllas, A. Corma, Active sites for H2 adsorption and activation in Au/TiO2 and the role of the support, J. Phys. Chem. A 113 (2009) 3750-3757. [37] T. Fujitani, I. Nakamura, T. Akita, M. Okumura, M. Haruta, Hydrogen dissociation by gold clusters, Angew. Chem. Int. Ed. 48 (2009) 9515-9518. [38] Y. Zhang, X. Cui, F. Shi, Y. Deng, Nano-gold catalysis in fine chemical synthesis, Chem. Rev. 112 (2012) 2467-2505. [39] A.S.K. Hashmi, G.J. Hutchings, Gold catalysis, Angew. Chem. Int. Ed. 45 (2006) 7896-7936. [40] M. Rudolph, A.S.K. Hashmi, Gold catalysis in total synthesis—An update, Chem. Soc. Rev. 41 (2012) 2448-2462. [41] L. McEwan, M. Julius, S. Roberts, J.C.Q. Fletcher, A review of the use of gold catalysts in selective hydrogenation reactions, Gold Bull. 43 (2010) 298-306. [42] F. Cardenas-Lizana, M.A. Keane, The development of gold catalysts for use in hydrogenation reactions, J. Mater. Sci. 48 (2013) 543-564. [43] M. Pan, A.J. Brush, Z.D. Pozun, Model studies of heterogeneous catalytic hydrogenation reactions with gold, Chem. Soc. Rev. 42 (2013) 5002-5013. [44] V. Ponec, On the role of promoters in hydrogenations on metals; α, β-unsaturated aldehydes and ketones, Appl. Catal. A Gen. 149 (1997) 27-48. [45] M. Che, C.O. Bennett, The influence of particle-size on the catalytic properties of supported metals, Adv. Catal. 36 (1989) 55-172. [46] S. Schimpf, M. Lucas, C.Mohr, U. Rodemerck, A. Bruckner, J. Radnik, H. Hofmeister, P. Claus, Supported gold nanoparticles: In-depth catalyst characterization and application in hydrogenation and oxidation reactions, Catal. Today 72 (2002) 63-78. [47] L. Stobinski, R. Dus, Atomic hydrogen solubility in thin gold films and its influence on hydrogen thermal desorption spectra from the surface, Appl. Surf. Sci. 62 (1992) 77-82. [48] P. Gallezot, D. Richard, Selective hydrogenation of α, β-unsaturated aldehydes, Catal. Rev. Sci. Eng. 40 (1998) 81-126. [49] R. Zanella, C. Louis, S. Giorgio, R. Touroude, Crotonaldehyde hydrogenation by gold supported on TiO2: Structure sensitivity and mechanism, J. Catal. 223 (2004) 328-339. [50] F. Delbecq, P. Sautet, A density functional study of adsorption structures of unsaturated aldehydes on Pt (111): A key factor for hydrogenation selectivity, J. Catal. 211 (2002) 398-406. [51] B.C. Campo, S. Ivanova, C. Gigola, C. Petit,M.A. Volpe, Crotonaldehyde hydrogenation on supported gold catalysts, Catal. Today 133-135 (2008) 661-666. [52] B. Campo, G. Santori, C. Petit, M. Volpe, Liquid phase hydrogenation of crotonaldehyde over Au/CeO2 catalysts, Appl. Catal. A Gen. 359 (2009) 79-83. [53] J. Lenz, B.C. Campo, M. Alvarez, M.A. Volpe, Liquid phase hydrogenation of α, β-unsaturated aldehydes over gold supported on iron oxides, J. Catal. 267 (2009) 50-56. [54] K.J. You, C.T. Chang, B.J. Liaw, C.T. Huang, Y.Z. Chen, Selective hydrogenation of α, β- unsaturated aldehydes over Au/MgxAlO hydrotalcite catalysts, Appl. Catal. A Gen. 361 (2009) 65-71. [55] H.Y. Chen, C.T. Chang, S.J. Chiang, B.J. Liaw, Y.Z. Chen, Selective hydrogenation of crotonaldehyde in liquid-phase over Au/Mg2AlO hydrotalcite, Appl. Catal. A Gen. 381 (2010) 209-215. [56] Y. Zhu, L. Tian, Z. Jiang, Y. Pei, S. Xie, M. Qiao, K. Fan, Heteroepitaxial growth of gold on flowerlike magnetite: An efficacious and magnetically recyclable catalyst for chemoselective hydrogenation of crotonaldehyde to crotyl alcohol, J. Catal. 281 (2011) 106-118. [57] M. Okumura, T. Akita, M. Haruta, Hydrogenation of 1,3-butadiene and of crotonaldehyde over highly dispersed Au catalysts, Catal. Today 74 (2002) 265-269. [58] C. Caballero, J. Valencia,M. Barrera, A. Gil, Selective hydrogenation of citral over gold nanoparticles on alumina, Powder Technol. 203 (2010) 412-414. [59] R. Liu, Y. Yu, K. Yoshida, G. Li, H. Jiang, Physically and chemically mixed TiO2- supported Pd and Au catalysts: Unexpected synergistic effects on selective hydrogenation of citral in supercritical CO2, J. Catal. 269 (2010) 191-200. [60] H. Shi, N. Xu, D. Zhao, B.-Q. Xu, Immobilized PVA-stabilized gold nanoparticles on silica show an unusual selectivity in the hydrogenation of cinnamaldehyde, Catal. Commun. 9 (2008) 1949-1954. [61] E. Castillejos, E. Gallegos-Suarez, B. Bachiller-Baeza, R. Bacsa, P. Serp, A. Guerrero- Ruiz, I. Rodríguez-Ramos, Deposition of gold nanoparticles on ZnO and their catalytic activity for hydrogenation applications, Catal. Commun. (2012) 2279-2282. [62] X. Zhang, Y.C. Guo, Z.C. Zhang, J.S. Gao, C.M. Xu, High performance of carbon nanotubes confining gold nanoparticles for selective hydrogenation of 1,3-butadiene and cinnamaldehyde, J. Catal. 292 (2012) 213-226. [63] C. Milone,M.C. Trapani, S. Galvagno, Synthesis of cinnamyl ethyl ether in the hydrogenation of cinnamaldehyde on Au/TiO2 catalysts, Appl. Catal. A Gen. 337 (2008) 163-167. [64] H. Rojas, G. Diaz, J.J. Martinez, C. Castaneda, A. Gomez-Cortes, Hydrogenation of α, β-unsaturated carbonyl compounds over Au and Ir supported on SiO2, J. Mol. Catal. A Chem. 363-364 (2012) 122-128. [65] C. Milone, R. Ingoglia, A. Pistone, G. Neri, F. Frusteri, S. Galvagno, Selective hydrogenation of α, β-unsaturated ketones to α, β-unsaturated alcohols on gold-supported catalysts, J. Catal. 222 (2004) 348-356. [66] C. Milone, R. Ingoglia, L. Schipilliti, C. Crisafulli, G. Neri, S. Galvagno, Selective hydrogenation of α, β-unsaturated ketone to α, β-unsaturated alcohol on gold-supported iron oxide catalysts: Role of the support, J. Catal. 236 (2005) 80-90. [67] C. Milone, C. Crisafulli, R. Ingoglia, L. Schipilliti, S. Galvagno, A comparative study on the selective hydrogenation of α, β unsaturated aldehyde and ketone to unsaturated alcohols on Au supported catalysts, Catal. Today 122 (2007) 341-351. [68] Y. Chen, J. Qiu, X.Wang, J. Xiu, Preparation and application of highly dispersed gold nanoparticles supported on silica for catalytic hydrogenation of aromatic nitro compounds, J. Catal. 242 (2006) 227-230. [69] Y. Hao, R. Liu, X. Meng, H. Cheng, F. Zhao, Deactivation of Au/TiO2 catalyst in the hydrogenation of o-chloronitrobenzene in the presence of CO2, J. Mol. Catal. A Chem. 335 (2011) 183-188. [70] L. Liu, B. Qiao, Y. Ma, J. Zhang, Y. Deng, Ferric hydroxide supported gold subnano clusters or quantum dots: Enhanced catalytic performance in chemoselective hydrogenation, Dalton Trans. 21 (2008) 2542-2548. [71] Y. Chen, W. Peng, S. Wang, F. Zhang, G. Zhang, X. Fan, Supported nano-sized gold catalysts for selective reduction of 4,4′-dinitrostilbene-2,2′-disulfonic acid using different reductants, Dyes Pigments 95 (2012) 215-220. [72] H. Gu, X. Xu, Y. Li, A. Chen, P. Ao, X. Yan, Homogeneously dispersed gold nanoparticles stabilized on the walls of ordered mesoporous carbon via a simple and repeatable method with enhanced hydrogenation properties for nitro-group, Microporous Mesoporous Mater. 173 (2013) 189-196. [73] S. Gomez, C.T. Jose, L.G. Fierro, C.R. Apesteguia, P. Reyes, Hydrogenation of nitrobenzene on Au/ZrO2 catalysts, J. Chil. Chem. Soc. 57 (2012) 1194-1198. [74] U. Hartfelder, C. Kartusch, M. Makosch, M. Rovezzi, J. Sa, J.A. van Bokhoven, Particle size and support effects in hydrogenation over supported gold catalysts, Catal. Sci. Technol. 3 (2013) 454-461. [75] D. He, H. Shi, Y.Wu, B.-Q. Xu, Synthesis of chloroanilines: Selective hydrogenation of the nitro in chloronitrobenzenes over zirconia-supported gold catalyst, Green Chem. 9 (2007) 849-851. [76] Ji Zhang, G. Chen, M. Chaker, F. Rosei, D. Ma, Gold nanoparticle decorated ceria nanotubes with significantly high catalytic activity for the reduction of nitrophenol and mechanism study, Appl. Catal. B Environ. 132- 133 (2013) 107-115. [77] M. Boronat, P. Concepción, A. Corma, S. González, F. Illas, P. Serna, A molecular mechanism for the chemoselective hydrogenation of substituted nitroaromatics with nanoparticles of gold on TiO2 catalysts: A cooperative effect between gold and the support, J. Am. Chem. Soc. 129 (2007) 16230-16237. [78] K. Shimizu, Y. Miyamoto, T. Kawasaki, T. Tanji, Y. Tai, A. Satsuma, Chemoselective hydrogenation of nitroaromatics by supported gold catalysts: Mechanistic reasons of size- and support-dependent activity and selectivity, J. Phys. Chem. C 113 (2009) 17803-17810. [79] K. Shimizu, T. Yamamoto, Y. Tai, A. Satsuma, Selective hydrogenation of nitrocyclohexane to cyclohexanone oxime by alumina-supported gold cluster catalysts, J. Mol. Catal. A Chem. 345 (2011) 54-59. [80] A. Corma, P. Serna, Chemoselective hydrogenation of nitro compounds with supported gold catalysts, Science 313 (2006) 332-334. [81] A. Corma, P. Serna, Preparation of substituted anilines from nitro compounds by using supported gold catalysts, Nat. Protoc. 1 (2006) 2590-2595. [82] P.L. Gkizis,M. Stratakis, I.N. Lykakis, Catalytic activation of hydrazine hydrate by gold nanoparticles: Chemoselective reduction of nitro compounds into amines, Catal. Commun. 36 (2013) 48-51. [83] P. Castaño, T.A. Zepeda, B. Pawelec, M. Makkee, J.L.G. Fierro, Enhancement of biphenyl hydrogenation over gold catalysts supported on Fe, Ce-and Ti-modified mesoporous silica (HMS), J. Catal. 267 (2009) 30-39. [84] C. Mohr, H. Hofmeister, J. Radnik, P. Claus, Identification of active sites in gold catalyzed hydrogenation of acrolein, J. Am. Chem. Soc. 125 (2003) 1905-1911. [85] G. Budroni, A. Corma, Gold and gold-platinum as active and selective catalyst for biomass conversion: Synthesis of γ-butyrolactone and one-pot synthesis of pyrrolidone, J. Catal. 257 (2008) 403-408. [86] Y. Liu, T. Xing, Z.Wei, X. Li, W. Yan, Liquid phase selective hydrogenation of phthalic anhydride to phthalide over titania supported gold catalysts, Catal. Commun. 10 (2009) 2023-2026. |