[1] M.A. Samaha, H.V. Tafreshi, M. Gad-el-Hak, Superhydrophobic surfaces: From the lotus leaf to the submarine, C.R. Mec. 340 (1-2) (2012) 18-34.[2] J.L. Barrat, L. Bocquet, Large slip effect at a nonwetting fluid-solid interface, Phys. Rev. Lett. 82 (23) (1999) 4671-4674.[3] S. Granick, Y.X. Zhu, H. Lee, Slippery questions about complex fluids flowing past solids, Nat. Mater. 2 (4) (2003) 221-227.[4] C.L.M.H. Navier, Memoire sur les lois du mouvement des fluids, Mem. Acad. R. Sci. Inst. France 6 (1823) 389-440.[5] J. Ou, B. Perot, J.P. Rothstein, Laminar drag reduction in microchannels using ultrahydrophobic surfaces, Phys. Fluids 16 (12) (2004) 4635-4643.[6] S. Lyu, D.C. Nguyen, D. Kim,W. Hwang, B. Yoon, Experimental drag reduction study of super-hydrophobic surface with dual-scale structures, Appl. Surf. Sci. 286 (2013) 206-211.[7] G. Rosengarten, J. Cooper-White, G. Metcalfe, Experimental and analytical study of the effect of contact angle on liquid convective heat transfer in microchannels, Int. J. Heat Mass Transfer 49 (21-22) (2006) 4161-4170.[8] C.H. Choi, U. Ulmanella, J. Kim, C.M. Ho, C.J. Kim, Effective slip and friction reduction in nanograted superhydrophobic microchannels, Phys. Fluids 18 (8) (2006) (87105-87105).[9] P. Joseph, C. Cottin-Bizonne, J.M. Benoît, C. Ybert, C. Journet, P. Tabeling, L. Bocquet, Slippage ofwater past superhydrophobic carbon nanotube forests inmicrochannels, Phys. Rev. Lett. 97 (15) (2006) 156104.[10] J. Ou, J.P. Rothstein, Direct velocity measurements of the flow past drag-reduction ultrahydrophobic surfaces, Phys. Fluids 17 (10) (2005) 103606.[11] H.J. Butt, R. Berger, E. Bonaccurso, Y. Chen, J. Wang, Impact of atomic force microscopy on interface and colloid science, Adv. Colloid Interf. Sci. 133 (2) (2007) 91-104.[12] R. Pit, H. Hervet, L. Léger, Direct experimental evidence of slip in hexadecane: solid interfaces, Phys. Rev. Lett. 85 (5) (2000) 980-984.[13] C. Lee, C.H. Choi, C.J. Kim, Structured surfaces for a giant liquid slip, Phys. Rev. Lett. 101 (6) (2008) 064501.[14] C.H. Choi, C.J. Kim, Large slip of aqueous liquid flow over a nanoengineered superhydrophobic surface, Phys. Rev. Lett. 96 (6) (2006) 066001.[15] D.C. Tretheway, C.D. Meinhart, A generating mechanism for apparent fluid slip in hydrophobic microchannels, Phys. Fluids 16 (5) (2004) 1509-1515.[16] N.M. Nouri,M.S. Bakhsh, S. Sekhavat, Analysis of shear rate effects on drag reduction in turbulent channel flow with superhydrophobic wall, J. Hydrodyn. Ser. B 25 (6) (2013) 944-953.[17] J. Cui,W. Li,W. Lam, Numerical investigation on drag reductionwith superhydrophobic surfaces by lattice-Boltzmannmethod, Comput.Math. Appl. 61 (12) (2011) 3678-3689.[18] E.M. Languri, K. Hooman, Slip flow forced convection in a microchannel with semicircular cross-section, Int. Commun. Heat Mass Transfer 38 (2) (2011) 139-143.[19] C.H. Choi, U. Ulmanella, J. Kim, C.M. Ho, C.J. Kim, Effective slip and friction reduction in nanograted superhydrophobic microchannels, Phys. Fluids 18 (8) (2006) 087105.[20] K. Watanabe, Yanuar, H. Udagawa, Drag reduction of Newtonian fluid in a circular pipe with a highly water repellent wall, J. Fluid Mech. 381 (1999) 225-238.[21] G.M. Mala, D. Li, Flow characteristics of water in microtubes, Int. J. Heat Fluid Flow 20 (2) (1999) 142-148. |