[1] M. Kano, Y. Nakagawa, Data-based process monitoring, process control, and quality improvement: recent developments and applications in steel industry, Comput. Chem. Eng. 32 (1-2) (2008) 12-24.[2] P. Kadlec, B. Gabrys, S. Strandt, Data-driven soft sensors in the process industry, Comput. Chem. Eng. 33 (4) (2009) 795-814.[3] P. Nomikos, J.F. MacGregor, Multi-way partial least squares in monitoring batch processes, Chemom. Intell. Lab. Syst. 30 (1) (1995) 97-108.[4] B.R. Bakshi, Multiscale PCA with application to multivariate statistical process monitoring, AICHE J. 44 (7) (1998) 1596-1610.[5] X. Zhang,W.W. Yan, X. Zhao, H.H. Shao, Nonlinear real-time process monitoring and fault diagnosis based on principal component analysis and kernel fisher discriminant analysis, Chem. Eng. Technol. 30 (9) (2007) 1203-1211.[6] W. Dong, Y. Yao, F. Gao, Phase analysis and identification method for multiphase batch processes with partitioning multi-way principal component analysis (MPCA) model, Chinese J. Chem. Eng. 20 (6) (2012) 1121-1127.[7] L. Wang, H. Shi, Improved kernel PLS-based fault detection approach for nonlinear chemical processes, Chinese J. Chem. Eng. 22 (6) (2014) 657-663.[8] K. Helland, H.E. Berntsen, O.S. Borgen, H. Martens, Recursive algorithm for partial least squares regression, Chemometr. Intell. Lab. Syst. 14 (1-3) (1992) 129-137.[9] X. Wang, U. Kruger, B. Lennox, Recursive partial least squares algorithms for monitoring complex industrial processes, Control. Eng. Pract. 11 (6) (2003) 613-632.[10] S.J. Mu, Y.Z. Zeng, R.L. Liu, P.Wu, H.Y. Su, J. Chu, Online dual updating with recursive PLS model and its application in predicting crystal size of purified terephthalic acid (PTA) process, J. Process Control 16 (6) (2006) 557-566.[11] K. Song, H.Wang, P. Li, Discounted-measurement RPLS algorithm and its application to quality control of rubber mixing process, CIESC J. 55 (6) (2004) 942-946 (in Chinese).[12] S.W. Choi, E.B. Martin, A.J. Morris, I.B. Lee, Adaptive multivariate statistical process control for monitoring time-varying processes, Ind. Eng. Chem. Res. 45 (9) (2006) 3108-3118.[13] M.J. Atalla, D.J. Inman, On model updating using neural networks, Mech. Syst. Signal Process. 12 (1) (1998) 135-161.[14] H.S. Tang, S.T. Xue, R. Chen, T. Sato, Onlineweighted LS-SVMfor hysteretic structural system identification, Eng. Struct. 28 (12) (2006) 1728-1735.[15] J.A.Westerhuis, S.P. Gurden, A.K. Smilde, Generalized contribution plots inmultivariate statistical processmonitoring, Chemometr. Intell. Lab. Syst. 51 (1) (2000) 95-114.[16] J.F. MacGregor, T. Kourti, Statistical process control of multivariate processes, Control. Eng. Pract. 3 (3) (1995) 403-414.[17] D.G. Alvarez, M.J. Fuente, P. Vega, G. Sainz, Fault detection and diagnosis using multivariate statistical techniques in a wastewater treatment plant, in: S. Engell (Ed.), 7th IFAC International Symposium on Advanced Control of Control of Chemical Processes, Curran Associates, Inc., USA, 2009, pp. 952-957.[18] Q. Jiang, X. Yan, Statistical monitoring of chemical processes based on sensitive kernel principal components, Chinese J. Chem. Eng. 21 (6) (2013) 633-643.[19] Y. Zhang, C. Ma, Fault diagnosis of nonlinear processes using multiscale KPCA and multiscale KPLS, Chem. Eng. Sci. 66 (1) (2011) 64-72.[20] R. Jia, Z. Mao, F.Wang, KPLS model based product quality control for batch processes, CIESC J. 64 (4) (2013) 1332-1339 (in Chinese).[21] S. Bersimis, S. Psarakis, J. Panaretos, Multivariate statistical process control charts: an overview, Qual. Reliab. Eng. Int. 23 (5) (2007) 517-543.[22] L.Y. Jiang, B.J. Xu, J.H. Xi, J.G. Cui, L. Fu, Improved confidence limits of T2 statistic for monitoring batch processes, 24th Chinese Control and Decision Conference (CCDC), IEEE, USA, 2012, pp. 2928-2932.[23] T. Chen, J. Morris, E. Martin, Probability density estimation via an infinite Gaussian mixture model: application to statistical process monitoring, J. R. Stat. Soc.: Ser. C: Appl. Stat. 55 (2006) 699-715.[24] J. Yu, S.J. Qin, Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models, AICHE J. 54 (7) (2008) 1811-1829.[25] J.E. Jackson, G.S. Mudholkar, Control procedures for residuals associated with principal component analysis, Technometrics 21 (3) (1979) 341-349.[26] Y.H. Shi, R.C. Eberhart, Fuzzy adaptive particle swarm optimization, Proceedings of the 2001 Congress on Evolutionary Computation, IEEE, USA, 2001, pp. 101-106.[27] O. Chapelle, V. Vapnik, O. Bousquet, S.Mukherjee, Choosingmultiple parameters for support vector machines, Mach. Learn. 46 (1-3) (2002) 131-159.[28] J. Haddock, J. Mittenthal, Simulation optimization using simulated annealing, Comput. Ind. Eng. 22 (4) (1992) 387-395.[29] R. Rubinstein, The cross-entropy method for combinatorial and continuous optimization, Methodol. Comput. Appl. Probab. 1 (2) (1999) 127-190.[30] R. Battiti, M. Brunato, F. Mascia, Reactive Search and Intelligent Optimization, Springer, Boston, 2008.[31] S. Boettcher, A.G. Percus, Extremal Optimization: An Evolutionary Local-search Algorithm, Kluwer Academic, Berlin, 2003. 61-77.[32] A.J. Burnham, J.F. MacGregor, R. Viveros, Latent variable multivariate regression modeling, Chemometr. Intell. Lab. Syst. 48 (2) (1999) 167-180.[33] S. Joe Qin, Recursive PLS algorithms for adaptive data modeling, Comput. Chem. Eng. 22 (4-5) (1998) 503-514.[34] F. Lindgren, P. Geladi, S.Wold, The kernel algorithmfor PLS, J. Chemom. 7 (1) (1993) 45-59.[35] P.K. Freakley, Rubber Processing and Production Organization, Plenum Press, New York, 1985.[36] Z. Zhang, K. Song, T.P. Tong, F. Wu, A novel nonlinear adaptive Mooney-viscosity model based on DRPLS-GP algorithm for rubber mixing process, Chemometr. Intell. Lab. Syst. 112 (2012) 17-23.[37] P. Geladi, Notes on the history and nature of partial least squares (PLS) modelling, J. Chemom. 2 (4) (1988) 231-246.[38] S.Wold, K. Esbensen, P. Geladi, Principal component analysis, Chemometr. Intell. Lab. Syst. 2 (1-3) (1987) 37-52.[39] C. Cortes, V. Vapnik, Support-vector networks, Mach. Learn. 20 (3) (1995) 273-297. |