[1] Z. Hoš?álek, Relationship between the carbohydrate metabolism of Streptomyces aureofaciens and the biosynthesis of chlortetracycline, Folia Microbiol. 9 (2) (1964) 78-88.
[2] A.O. Onadipe, Prediction of microbial contamination in cell culture using a laser scanning system, BioPharm 14 (2001) 38-40.
[3] L. Jimenez, Light up the life in microbial contamination, Pharm. Formul. Qual. (August/September 2001) 54-55.
[4] I. Elmroth, A. Fox, O. Holst, L. Larsson, Prediction of bacterial contamination in cultures of eukaryotic cell by gas chromatography-mass spectrometry, Biotechnol. Bioeng. 42 (1993) 421-429.
[5] B.A. Plantz, J. Anderen, L.A. Smith, M.M. Meagher, V.L. Schlegel, Prediction of nonhost viable contamination in Pichia pastoris culture and fermentation broth, J. Ind. Microbiol. Biotechnol. 30 (2003) 643-650.
[6] J.R. Swartz, N. McFarland, Genetic approaches to the prediction of contaminants in Escherichia coli fermentations, Biotechnol. Prog. 14 (1998) 88-91.
[7] R. Van Beurden, R. Mackintosh, New developments in rapid microbiology using immunoassays, Food Agric. Immunol. 6 (1994) 209-214.
[8] O. Xu, Y. Fu, H. Su, et al., A selective moving window partial least squares method and its application in process modeling, Chin. J. Chem. Eng. 22 (7) (2014) 799-804.
[9] C.Q. Cheryl, H. Juergen, Processmonitoring and parameter estimation via unscented kalman filtering, J. Loss Prev. Process Ind. 22 (2009) 703-709.
[10] G. Yang, X. Li, Y. Qian, A real-time updated model predictive control strategy for batch processes based on state estimation, Chin. J. Chem. Eng. 22 (3) (2014) 318-329.
[11] J. Wang, L. Zhao, T. YU, On-line estimation in fed-batch fermentation process using state space model and unscented kalman filter, Chin. J. Chem. Eng. 18 (2) (2010) 258-264.
[12] Y.W. Zhang, Z.Y. Hu, On-line batch process monitoring using hierarchical kernel partial least squares, Chem. Eng. Res. Des. 89 (2011) 2078-2084.
[13] W.W. Dong, Y. Yao, F.R. Gao, Phase analysis and identification method for multiple batch process with partitioning multi-way principal component, Chin. J. Chem. Eng. 20 (6) (2012) 1121-1127.
[14] J. Mori, J. Yu, Quality relevant nonlinear batch process performance monitoring using a kernel based multiway non-gaussian latent subspace, J. Process Control 24 (2014) 57-71.
[15] X. Zhao, W.W. Yan, H.H. Shao, Nonlinear statistical process monitoring and fault diagnosis based on kernel fisher discriminant analysis, J. Chem. Ind. Eng. 58 (4) (2007) 951-956 (in Chinese).
[16] X.D. Li, X.H. Huang, J. Dezert, L. Duan, M.Wang, A successful application of DSmT in sonar grid map building and comparison with DST-based approach, Int. J. Innov. Comput. Inf. Control 3 (3) (2007) 539-549.
[17] A. Tchamova, T. Semerdjive, J. Dezert, Estimation of target behavior tendencies using DSmT, Prco. Of Fusion 2003, Cairns, Australia, July 8-11, 2003.
[18] S. Corgne, L. Hubert-Moy, J. Dezert, J. Mercier, Land cover change prediction with a new theory of plausible and paradoxical reasoning, Proc. Of Fusion 2003 Conf., Cairns, Australiz, July 8-11, 2003.
[19] F. Smarandache, J. Dezert, Information fusion based on new proportional conflict redistribution rules, Proceedings of Fusion 2005 Conf., Philadelphia, July 26-29, 2005.
[20] J.Y. Sung, H.C. Yoon, B.P. Jin, Generalized Predictive Control Based on Self-recurrent Wavelet Neural Network for Stable Path Tracking ofMobile Robots: Adaptive Learning Rates Approach, IEEE Transactions on Circuits and System—I: Regular Papers, 53(6), 2006, pp. 1381-1394.
[21] K. Xiong, H.Y. Zhang, C.W. Chan, Performance evaluation of UKF-based nonlinear filtering, Automatica 42 (2006) 261-270.
[22] J.W. Yang, X.G. Chen, H.P. Jin, L. WU, Study on the industrial chlortetracycline fermentation feed rate adjustment method based on soft sensor, Chin. J. Sci. Instrum. 35 (2) (2014) 468-474. |