[1] N.G.-I.B. Lonsane, N.G. Karanth, Foam control in submerged fermentation: State of the art, Adv. Appl. Microbiol. 33 (1988) 173.[2] A. Etoc, K. Delvigne, J. Lecomte, P. Thonart, FoamControl in Fermentation Bioprocess Twenty-seventh Symposium on Biotechnology for Fuels and Chemicals, Springer, 2006.[3] M.P. Aronson, S.O. Lin, G.A. Policello, Self hydrophobing silicone/hydrocarbon antifoam compositions, Google Patents1991.[4] R. Wittler, Method and apparatus for controlling foam in a vinegar fermentation process, Google Patents1991.[5] F.W. Hoeks, V. Wees-angerman, K.C.A.M. Luyben, K. Gasser, S. Schmid, H.M. Mommers, Stirring as foam disruption (SAFD) technique in fermentation processes, Can. J. Chem. Eng. 75 (6) (1997) 1018-1029.[6] P. Calik, N. Ileri, B.I. Erdinc, N.M.A. Aydogan, Novel antifoam for fermentation processes: fluorocarbon-hydrocarbon hybrid unsymmetrical bolaformsurfactant, Langmuir 21 (19) (2005) 8613-8619.[7] J. Varley, A.K. Brown, J.W.R. Boyd, P.W. Dodd, S. Gallagher, Dynamic multi-point measurement of foam behaviour for a continuous fermentation over a range of key process variables, Biochem. Eng. J. 20 (1) (2004) 61-72.[8] B. Junker, Foam and its mitigation in fermentation systems, Biotechnol. Prog. 23 (4) (2007) 767-784.[9] R. Patnaik, R. Zolandz, D. Green, D. Kraynie, L-Tyrosine production by recombinant Escherichia coli: Fermentation optimization and recovery, Biotechnol. Bioeng. 99 (4) (2008) 741-752.[10] S. Brey, S. Gosta, P. Rogers, J. Bryce, P. Morris, W. Mitchell, G. Stewart, The effect of proteinase A on foam-active polypeptides during high and low gravity fermentation, J. Inst. Brew. 109 (3) (2003) 194-202.[11] H. Shimoi, K. Sakamoto, M. Okuda, R. Atthi, K. Iwashita, K. Ito, The AWA1 gene is required for the foam-forming phenotype and cell surface hydrophobicity of sake yeast, Appl. Environ. Microbiol. 68 (4) (2002) 2018-2025.[12] G.W. Luli,W.R. Strohl, Comparison of growth, acetate production and acetate inhibition of Escherichia coli strains in batch and fed-batch fermentations, Appl. Environ. Microbiol. 56 (4) (1990) 1004-1011.[13] H. Qi, X. Xin, S. Li, J. Wen, Y. Chen, X. Jia, Higher-level production of ascomycin (FK520) by Streptomyces hygroscopicus var. ascomyceticus irradiated by femtosecond laser, Biotechnol. Bioproc. Eng. 17 (4) (2012) 770-779.[14] C.H. Fiske, Y. Subbarow, The colorimetric determination of phosphorus, J. Biol. Chem. 66 (2) (1925) 375-400.[15] S. Yu, D. Huang, J.Wen, S. Li, Y. Chen, X. Jia, Metabolic profiling of a Rhizopus oryzae fumaric acid production mutant generated by femtosecond laser irradiation, Bioresour. Technol. 114 (2012) 610-615.[16] J.N. Phue, J. Shiloach, Impact of dissolved oxygen concentration on acetate accumulation and physiology of E. coli BL21, evaluating transcription levels of key genes at different dissolved oxygen conditions, Metab. Eng. 7 (5) (2005) 353-363.[17] D. Davies, Anaerobic metabolism and the production of organic acids, Biochem. Plants 2 (1980).[18] R. Pedreschi, C. Franck, J. Lammertyn, A. Erban, J. Kopka, M. Hertog, B. Verlinden, B. Nicolai, Metabolic profiling of 'Conference' pears under low oxygen stress, Postharvest. Biol. Technol. 51 (2) (2009) 123-130.[19] M. Åkesson, P. Hagander, J.P. A., Avoiding acetate accumulation in Escherichia coli cultures using feedback control of glucose feeding, Biotechnol. Bioeng. 73 (3) (2001) 223-230.[20] Y. Ko, W. Bentley, W. Weigand, The effect of cellular energetics on foreign protein production, Appl. Biochem. Biotechnol. 50 (2) (1995) 145-159.[21] J.Y.H. Kim, H.J. Cha, Down-regulation of acetate pathway through antisense strategy in Escherichia coli: Improved foreign protein production, Biotechnol. Bioeng. 83 (7) (2003) 841-853.[22] D. Liu, Y. Chen, A. Li, T. Zhao, T. Zhou, B. Li, J. Xie, X. Chen, J. Bai, Y. Hu, Adaptation of glycolysis and growth to acetate in Sporolactobacillus sp. Y2-8, Appl. Biochem. Biotechnol. 168 (2) (2012) 455-463.[23] R.A. Majewski, M.M. Domach, Simple constrained-optimization view of acetate overflow in E. coli, Biotechnol. Bioeng. 35 (7) (1990) 732-738.[24] H. Lin, N.M. Castro, G.N. Bennett, K.Y. San, Acetyl-CoA synthetase overexpression in Escherichia coli demonstrates more efficient acetate assimilation and lower acetate accumulation: A potential tool in metabolic engineering, Appl. Microbiol. Biotechnol. 71 (6) (2006) 870-874. |