[1] A. Cincotti, R. Orru, A. Broi, G. Cao, Effect of catalyst concentration and simulation of precipitation processes on liquid-phase catalytic oxidation of p-xylene to terephthalic acid, Chem. Eng. Sci. 52 (21) (1997) 4205-4213. [2] T. Kohonen, The self-organizing map, Proc. IEEE 78 (9) (1990) 1464-1480. [3] L. Cser, A.S. Korhonen, P.Mantyla, O. Simula, Data mining in improving the geometric quality parameters of hot rolled strips, Proceedings of the 1999 International Conference on Quality Manufacturing, 1999 (Stellenbosch, South Africa). [4] H. Saxén, L. Lassus, M. Seppänen, T. Karjalahti, Pattern recognition and classification of blast furnace wall temperatures, Ironmak. Steelmak. 27 (3) (2000) 207-211. [5] J.S. Van Deventer, D.W. Moolman, C. Aldrich, Visualisation of plant disturbances using self-organising maps, Comput. Chem. Eng. 20 (1996) S1095-S1100. [6] J. Ahola, E. Alhoniemi, O. Simula, Monitoring industrial processes using the selforganizing map, Soft Computing Methods in Industrial Applications, 1999. SMCia/ 99. Proceedings of the 1999 IEEE Midnight-Sun Workshop on: IEEE, 1999. [7] Y.S. Ng, R. Srinivasan, Multivariate temporal data analysis using self-organizing maps. 1. Training methodology for effective visualization of multistate operations, Ind. Eng. Chem. Res. 47 (20) (2008) 7744-7757. [8] Y.S. Ng, R. Srinivasan, Multivariate temporal data analysis using self-organizing maps. 2. Monitoring and diagnosis of multistate operations, Ind. Eng. Chem. Res. 47 (20) (2008) 7758-7771. [9] F. Corona, M.Mulas, R. Baratti, J.A. Romagnoli, On the topologicalmodeling and analysis of industrial process data using the SOM, Comput. Chem. Eng. 34 (12) (2010) 2022-2032. [10] Z. Ge, C. Yang, Z. Song, Improved kernel PCA-basedmonitoring approach for nonlinear processes, Chem. Eng. Sci. 64 (9) (2009) 2245-2255. [11] I. Borg, P. Groenen, Modern Multidimensional Scaling, Springer, NY, 1997. [12] D. DeMers, G. Cottrell, Non-linear dimensionality reduction, Adv. Neural Inf. Process. Syst. (1993) 580-580. [13] S.T. Roweis, L.K. Saul, Nonlinear dimensionality reduction by locally linear embedding, Science 290 (5500) (2000) 2323-2326. [14] M.E. Tipping, C.M. Bishop, Mixtures of probabilistic principal component analyzers, Neural Comput. 11 (2) (1999) 443-482. [15] Y. Dai, J. Zhao, Fault diagnosis of batch chemical processes using a dynamic time warping (DTW)-based artificial immune system, Ind. Eng. Chem. Res. 50 (8) (2011) 4534-4544. [16] K. Ghosh, R. Srinivasan, Immune-system-inspired approach to process monitoring and fault diagnosis, Ind. Eng. Chem. Res. 50 (3) (2010) 1637-1651. [17] X. Chen, X. Yan, Using improved self-organizing map for fault diagnosis in chemical industry process, Chem. Eng. Res. Des. 90 (12) (2012) 2262-2277. [18] X. Chen, X. Yan, Fault diagnosis in chemical process based on self-organizingmap integrated with fisher discriminant analysis, Chin. J. Chem. Eng. 21 (4) (2013) 382-387. [19] Z. Zhang, H. Zha, Principal manifolds and nonlinear dimensionality reduction via tangent space alignment, J. Shanghai Univ. Engl. Ed. 8 (4) (2004) 406-424. [20] L. Tao, X. Kong,W. Zhong, F. Qian,Modified self-adaptive immune genetic algorithm for optimization of combustion side reaction of p-xylene oxidation, Chin. J. Chem. Eng. 20 (6) (2012) 1047-1052. [21] B. Xu, R. Qi, W. Zhong, F. Qian, Optimization of p-xylene oxidation reaction process based on self-adaptive multi-objective differential evolution, Chemom. Intell. Lab. Syst. 127 (2013) 55-62. [22] F. Qian, L. Tao,W. Sun,W. Du, Development of a free radical kinetic model for industrial oxidation of p-xylene based on artificial neural network and adaptive immune genetic algorithm, Ind. Eng. Chem. Res. 51 (8) (2012) 3229-3237. |