[1] X.H. Lan, The global production capacity and improvement of tinplate, China Metal Bull. 2 (2005) 12-13 (in Chinese).[2] S. Blunden, T. Wallace, Tin in canned food: A review and understanding of occurrence and effect, Food Chem. Toxicol. 41 (2003) 1651-1662.[3] A.A. D'yakonov, O.N. Moleva, Y.A. Mel'nikov, M.A. Nikiforov, A.F. Vakil'ev, Improving tinplate production, Steel Transl. 42 (3) (2012) 253-264.[4] L.A. Calderón, L. Iglesias, A. Laca, M. Herrero, M. Díaz, The utility of life cycle assessment in the ready meal food industry, Resour. Conserv. Recycl. 54 (12) (2010) 1196-1207.[5] Steel for packaging — Flat steel products intended for use in contactwith food stuffs, products or beverages for human and animal consumption — Tin coated steel, British standard, EN10333-2005, 2005.[6] F.I. Nobel, B.D. Ostrow, Bath and process for electroplating tin, lead and tin / lead alloys, USA Patent, 4701244 (1987).[7] I. Petersson, E. Ahlberg, Kinetics of the electrodeposition of Pb-Sn alloys: Part I. At glassy carbon electrodes, J. Electroanal. Chem. 485 (2) (2002) 166-167.[8] B. Neveu, F. Lallemand, G. Poupon, Z. Mekhalif, Electrodeposition of Pb-free Sn alloys in pulsed current, Appl. Surf. Sci. 252 (10) (2006) 3561-3573.[9] J.H. Kim, M.S. Suh, H.S. Kwon, Effects of plating conditions on the microstructure of 80Sn-20Pb electrodeposits from an organic sulphonate bath, Surf. Coat. Technol. 78 (1) (1996) 56-63.[10] Q.X. Qin, H.M. Zhang, P. Yu, B.Y.Wang, Research on bright Sn-Pb alloy electroplating with citrate-EDTA bath (I) technology study, Plat. Finish. 17 (3) (1995) 4-7.[11] F.I. Danilov, E.A. Vasil'eva, T.E. Butyrina, V.S. Protsenko, Electrodeposition of lead-tin alloy from methanesulphonate bath containing organic surfactants, Prot. Met. Phys. Chem. Surf. 46 (6) (2010) 697-703.[12] D.C. Joao Martins, M.C. Jack, Cost and environmental benefits in converting existing vertical high speed tin-plate lines from phenol sulfonic to methane sulfonic acid tin electrolyte at major Brazilian tin mill, Natl. Assoc. Surf. Finish. Annu. Conf. Trade Show, SUR/FIN, Grand Rapids, MI, USA 2010, pp. 815-840.[13] D.B.C. Leandro José, N. TâniaMaria Cavalcanti, L. Jefferson Fabrício Cardoso, D.S. João Luiz Câmara, Comparative study of the organic additives effects in tin electrodeposition on steel using acid baths for tinplate production, 65th ABM International Congress, Rio de Janeiro 2010, pp. 2320-2331.[14] M.P. Toben, G.A. Federman, D.W. Thomson, N.D. Brown, High speed electroplating of tinplate, USA Patent, 5174887 (1990).[15] A. George, L. Federman, A comparative study of the effects of metallic impurities on MSA-&PSA-based tin electrolytes, Fifth International Tinplate Conference, London, ITRI, 10 1992, p. 88.[16] Z.M. Shi, M. Liu, A. Atrens, Measurement of the corrosion rate of magnesium alloys using Tafel extrapolation, Corros. Sci. 52 (2) (2010) 579-588.[17] B. Elsener, Corrosion rate of steel in concrete—Measurements beyond the Tafel law, Corros. Sci. 47 (12) (2005) 3019-3033.[18] E. Budevski, G. Staikov, W.J. Lorenz, Electrocrystallization nucleation and growth phenomena, Electrochim. Acta 45 (15) (2000) 2559-2574.[19] F.J. Barry, V.J. Cunnane, Synergistic effects of organic additives on the discharge, nucleation and growth mechanisms of tin at polycrystalline copper electrode, J. Electroanal. Chem. 537 (1-2) (2002) 151-163.[20] E. Guaus, J. Torrent Burgues, Tin-zinc electrodeposition from sulphate-tartrate baths, J. Electroanal. Chem. 575 (2) (2005) 25-36.[21] M. Volmer, A. Weber, Nucleation in super-saturated products, J. Phys. Chem. 119 (1927) 277-301. |