[1] J.S. Alford, Bioprocess control: Advances and challenges, Comput. Chem. Eng. 30 (10-12) (2006) 1464-1475.[2] K. Schügerl, Progress in monitoring, modeling and control of bioprocesses during the last 20 years, J. Biotechnol. 85 (2) (2001) 149-173.[3] H.P. Jin, X.G. Chen, J.W. Yang, L. Wu, Adaptive soft sensor modeling framework based on just-in-time learning and kernel partial least squares regression for nonlinear multiphase batch processes, Comput. Chem. Eng. 71 (2014) 77-93.[4] P. Kadlec, B. Gabrys, S. Strandt, Data-driven soft sensors in the process industry, Comput. Chem. Eng. 33 (4) (2009) 795-814.[5] A. Jahanmiri, H. Rasooli, On-line states and parameter identification of acetone-butanol-ethanol fermentation process, Biochem. Eng. J. 24 (2) (2005) 115-123.[6] L. Dewasme, G. Goffaux, A.L. Hantson, A. Vande Wouwer, Experimental validation of an extended Kalman filter estimating acetate concentration in E. coli cultures, J. Process Control 23 (2) (2013) 148-157.[7] S.J. Julier, J.K. Uhlmann, Unscented filtering and nonlinear estimation, Proc. IEEE 92 (3) (2004) 401-422.[8] R. Kandepu, B. Foss, L. Imsland, Applying the unscented Kalman filter for nonlinear state estimation, J. Process Control 18 (7) (2008) 753-768.[9] J.L. Wang, L.Q. Zhao, T. Yu, On-line estimation in fed-batch fermentation process using state space model and unscented Kalman filter, Chin. J. Chem. Eng. 18 (2) (2010) 258-264.[10] I. Arasaratnam, S. Haykin, Cubature Kalman filters, IEEE Trans. Autom. Control 54 (6) (2009) 1254-1269.[11] K.P.B. Chandra, D.W. Gu, I. Postlethwaite, Cubature information filter and its applications, Proceedings of 2011 American Control Conference, San Francisco, CA, USA 2011, pp. 3609-3614.[12] R. Dondo, D. Marqués, Simulation results for on-line optimization of a batch bioreactor using nonlinear filtering and optimal control, ISA Trans. 42 (2) (2003) 289-303.[13] R.D. Gudi, S.L. Shah, M.R. Gray, Adaptive multirate state and parameter estimation strategies with application to a bioreactor, AIChE J 41 (11) (1995) 2451-2464.[14] R.D. Gudi, S.L. Shah,M.R. Gray, P.K. Yegneswaran, Adaptivemultirate estimation and control of nutrient levels in a fed-batch fermentation using off-line and on-line measurements, Can. J. Chem. Eng. 75 (3) (1997) 562-573.[15] Z.I.T.A. Soons, J. Shi, J.D. Stigter, L.A. Van Der Pol, G. Van Straten, A.J.B. Van Boxtel, Observer design and tuning for biomass growth and kLa using online and offline measurements, J. Process Control 18 (7-8) (2008) 621-631.[16] M.A. Myers, S. Kang, R.H. Luecke, State estimation and control for systems with delayed off-line measurements, Comput. Chem. Eng. 20 (5) (1996) 585-588.[17] S. Tatiraju,M. Soroush, R. Mutharasan,Multi-rate nonlinear state and parameter estimation in a bioreactor, Biotechnol. Bioeng. 63 (1) (1999) 22-32.[18] W. Cao, Y.C. Soh, Nonlinear multi-rate current state estimation: Convergence analysis and application to biological systems, Comput. Chem. Eng. 28 (9) (2004) 1623-1633.[19] V. Prasad,M. Schley, L.P. Russo, B.W. Bequette, Product property and production rate control of styrene polymerization, J. Process Control 12 (3) (2002) 353-372.[20] A. Gopalakrishnan, N.S. Kaisare, S. Narasimhan, Incorporating delayed and infrequent measurements in extended Kalman filter based nonlinear state estimation, J. Process Control 21 (1) (2011) 119-129.[21] R.K. Mutha,W.R. Cluett, On-line nonlinear model-based estimation and control of a polymer reactor, AIChE J 43 (11) (1997) 3042-3058.[22] R. Amirthalingam, S.W. Sung, J.H. Lee, Two-step procedure for data-based modeling for inferential control applications, AIChE J 46 (10) (2000) 1947-1988.[23] R. Van DerMerwe, Sigma-point Kalman filters for probabilistic inference in dynamic state-space models(Ph.D. Thesis) University of Stellenbosch, 2004.[24] S.C. Patwardhan, S. Narasimhan, P. Jagadeesan, B. Gopaluni, S.L. Shah, Nonlinear Bayesian state estimation: A review of recent developments, Control. Eng. Pract. 20 (10) (2012) 933-953.[25] M. Farza, K. Busawon, H. Hammouri, Simple nonlinear observers for on-line estimation of kinetic rates in bioreactors, Automatica 34 (3) (1998) 301-318.[26] D.P. Niu,M.X. Jia, F.L.Wang, D.K. He, Optimization of Nosiheptide fed-batch fermentation process based on hybridmodel, Ind. Eng. Chem. Res. 52 (9) (2013) 3373-3380.[27] G. Birol, C. Ündey, A. Çinar, A modular simulation package for fed-batch fermentation: Penicillin production, Comput. Chem. Eng. 26 (11) (2002) 1553-1565.[28] U. Yüzgeç, M. Türker, A. Hocalar, On-line evolutionary optimization of an industrial fed-batch yeast fermentation process, ISA Trans. 48 (1) (2009) 79-92.[29] L.Z. Chen, S.K. Nguang, X.D. Chen, X.M. Li, Modelling and optimization of fed-batch fermentation processes using dynamic neural networks and genetic algorithms, Biochem. Eng. J. 22 (1) (2004) 51-61.[30] B. Sonnleitner, O. Käppeli, Growth of Saccharomyces cerevisiae is controlled by its limited respiratory capacity: Formulation and verification of a hypothesis, Biotechnol. Bioeng. 28 (6) (1986) 927-937.[31] C.C. Chang, C.J. Lin, LIBSVM: A library for support vector machines, ACM Trans. Intell. Syst. Technol. 2 (3) (2011) 1-27. |