[1] P. Kadlec, B. Gabrys Bogdan, S. Strandt, Data-driven soft sensors in the process industry, Comput. Chem. Eng. 33 (4) (2009) 795-814.[2] L. Fortuna, S. Graziani, A. Rizzo, G.M. Xibilia, Soft sensors for monitoring and control of industrial processes, Springer-Verlag, London, 2007.[3] Y. Liu, Z.L. Gao, P. Li, H.Q. Wang, Just-in-time kernel learning with adaptive parameter selection for soft sensor modeling of batch processes, Ind. Eng. Chem. Res. 51 (11) (2012) 4313-4327.[4] H.G. Tian, X.M. Tian, X.G. Deng, Soft sensor for polypropylene melt index based on improved orthogonal least squares,World Congress on Intelligent Control and Automation (WCICA), July 6-9, 2010, Jinan, China, 2010.[5] Z.Q. Ge, Z.H. Song, Semisupervised Bayesian method for soft sensor modeling with unlabeled data samples, AIChE J 57 (8) (2011) 2109-2118.[6] W.M. Shao, X.M. Tian, P.Wang, Online learning soft sensor method based on recursive kernel algorithm for PLS, CIESC J. 63 (9) (2012) 2887-2891.[7] A.K. Pani, V.K. Vadlamudi, H.K. Mohanta, Development and comparison of neural network based soft sensors for online estimation of cement clinker quality, ISA Trans. 52 (1) (2013) 19-29.[8] H. Kaneko, K. Funatsu, Application of online support vector regression for soft sensors, AIChE J 60 (2) (2014) 600-612.[9] S.N. Zhang, F.L. Wang, D.K. He, R.D. Jia, Real-time product quality control for batch processes based on stacked least-squares support vector regressionmodels, Comput. Chem. Eng. 36 (10) (2012) 217-226.[10] J. Tang, T.Y. Chai,W. Yu, L.J. Zhao, On-line KPLS algorithm with application to ensemble modeling parameters of mill load, 39 (5) (2013) 471-486.[11] P. Kadlec, R. Grbi?, B. Gabrys, Review of adaptation mechanism for data-driven soft sensors, Comput. Chem. Eng. 35 (1) (2011) 1-24.[12] H. Kaneko, K. Funatsu, Classification of the degradation of soft sensor models and discussion on adaptive models, AIChE J 59 (7) (2013) 2239-2347.[13] W.M. Shao, X.M. Tian, H.L. Chen, Adaptive anti-over-fitting soft sensing method based on local learning, Preprints of the 10th IFAC International Symposium on Dynamics and Control of Process Systems, December 18-20, 2013. Mumbai, India, 2013.[14] K. Chen, J. Ji, H.Q. Wang, Z.H. Song, Adaptive local kernel-based learning for soft sensormodeling of nonlinear processes, Chem. Eng. Res. Des. 89 (10) (2011) 2117-2124.[15] Y. Liu, Z.L. Gao, J.H. Chen, Development of soft sensors for online quality prediction of sequential-reactor-multi-grade industrial processes, Chem. Eng. Sci. 102 (11) (2013) 602-612.[16] J.P. Zhang, Y.S. Yim, J.M. Yang, Intelligent selection of instances for prediction functions in lazy learning algorithms, Artif. Intell. Rev. 11 (1-5) (1997) 175-191.[17] Q.B. Zheng, H. Kimura, Just-in-timemodeling for function prediction and its applications, Asian J. Control 3 (1) (2001) 35-44.[18] M.R. Gupta, E.K. Garcia, E. Chin, Adaptive local linear regression with application to printer color management, IEEE Trans. Image Process. 17 (6) (2008) 936-945.[19] C. Cheng,M.S. Chiu, A newdata-basedmethodology for nonlinear processmodeling, Chem. Eng. Sci. 59 (13) (2004) 2801-2810.[20] Y.Q. Liu, D.P. Huang, Y. Li, Development of interval soft sensors using enhanced justin- time learning and inductive confidence predictor, Ind. Eng. Chem. Res. 51 (8) (2012) 3356-3367.[21] K. Fujiwara, M. Kano, S. Hasebe, Development of correlation-based pattern recognition algorithm and adaptive soft-sensor design, Control. Eng. Pract. 20 (4) (2012) 371-378.[22] K. Fujiwara, M. Kano, S. Hasebe, A. Takinami, Soft-sensor development using correlation-based just-in-time modeling, AIChE J 55 (7) (2009) 1754-1764.[23] J. Yang, D. Zhang, J.Y. Yang, B. Niu, Globally maximizing, locally minimizing: Unsupervised discriminant projection with applications to face and palm biometrics, IEEE Trans. Pattern Anal. Mach. Intell. 29 (4) (2007) 650-664.[24] X.F. He, P. Niyogi, Locality preserving projections, Neural Inform. Process. Syst. 16 (2003) 153-160.[25] J. Yang, D. Zhang, J.Y. Yang, ‘Non-locality’ preserving projection and its application to palm print recognition, 9th International Conference on Control, Automation, Robotics, and Vision, Dec. 5-8, 2006, Singapore, 2006.[26] M.G. Zhang, Z.Q. Ge, Z.H. Song, R.W. Fu, Global-local structure analysismodel and its application for fault detection and identification, Ind. Eng. Chem. Res. 50 (2011) 6837-6848.[27] Y. Kansha, M.S. Chiu, Adaptive generalized predictive control based on JITL technique, J. Process Control 19 (7) (2009) 1067-1072.[28] G.C. Cawley, N.L.C. Talbot, Preventing over-fitting during model selection via Bayesian regularisation of the hyper-parameters, J. Mach. Learn. Res. 8 (2007) 841-861.[29] H.J. Galicia, Q.P. He, J. Wang, Adaptive outlier detection and classification for online soft sensor update, Preprints of the 8th IFAC Symposium on Advanced Control of Chemical Processes The International Federation of Automatic Control, Furama Riverfront, Singapore, July 10-13 2012, pp. 402-407.[30] H. Kaneko, K. Funatsu, Classification of the degradation of soft sensor models and discussion on adaptive models, AIChE J 59 (7) (2013) 2339-2347.[31] T.H. Zhang, J. Yang, D.L. Zhao, X.L. Ge, Linear local tangent space alignment and application to face recognition, Neurocomputing 70 (7) (2007) 1547-1553.[32] J.A.K. Suykens, T.V. Gestel, J.D. Brabanter, B.D. Moor, J. Vandewalle, Least squares support vector machines, World Scientific, Singapore, 2002.[33] J.A.K. Suykens, J.D. Brabanter, L. Lukas, J. Vandewalle, Weighted least squares support vector machines: Robustness and sparse approximation, Neurocomputing 48 (1) (2002) 85-105.[34] Y. Liu, H.Q. Wang, J. Yu, P. Li, Selective recursive kernel learning for online identification of nonlinear systems with NARX form, J. Process Control 20 (2) (2009) 181-194.[35] H. Kaneko, K. Funatsu, Database monitoring index for adaptive soft sensors and the application to industrial process, AIChE J 60 (1) (2014) 160-169. |