[1] C.H. Yan, J.T. Jia, C.S. Liao, B.G. Li,W.L. Li, G.D'. Ascenzo, Application of 241Am EDXRF to the determination of rare earth samples of solvent extraction processes, J. Alloys Compd. 275-277 (1998) 940-943.[2] B. Zhang, J.T. Jia, C.S. Liao, C.H. Yan, Determination of neodymium in rare earth mixture by spectrophotometry, Chin. J. Rare Metals 32 (4) (2008) 540-542.[3] Z.G. Deng, T.H. Xu, The current status and development tendency of ionic rare earth extraction separation process, Nonferrous Metals Sci. Eng. 3 (4) (2012) 20-23.[4] H. Yang, T.Y. Chai, Component content soft-sensor based on neural networks in rareearth countercurrent extraction process, Acta Autom. Sin. 32 (4) (2006) 489-495.[5] H. Yang, M.H. Tan, T.Y. Chai, Neural networks based component content soft-sensor in countercurrent rare-earth extraction, J. Rare Earths 21 (6) (2003) 691-696.[6] Z.R. Xiang, S.Q. Liu, Component content soft-sensor in rare earth extraction based on LS-SVM, J. Chin. Rare Earth Soc. 27 (01) (2009) 132-136.[7] G.W. Hang, The research about the characteristics of rare earth ions in cascade extraction process control application, Jiangxi Metall. 16 (5) (1996) 26-27.[8] B.F. Cao, Y.F. Xie,W.H. Gui, L.J.Wei, C.H. Yang, Integrated predictionmodel of bauxite concentrate grade based on distributed machine vision, Miner. Eng. 53 (2013) 31-38.[9] Sameer H. Morar, Martin C. Harris, Dee J. Bradshaw, The use of machine vision to predict flotation performance, Miner. Eng. (2012) 31-36.[10] W.T. Li, D.H. Wang, T.Y. Chai, Flame image-based burning state recognition for sintering process of rotary kiln using heterogeneous features and fuzzy integral, IEEE Trans. Ind. Inf. 8 (4) (2012) 780-790.[11] H. Yang, Z.J. Gao, R.X. Lu, Measure method of component content based on rare earth ions color characteristic identification, J. Chin. Soc. Rare Earths 30 (1) (2012) 108-112.[12] R.X. Lu, H. Yang, K.P. Zhang, Component content soft-sensor of SVM based on ions color characteristics, TELKOMNIKA 10 (6) (2012) 1445-1452.[13] R.X. Lu, H. Yang, C.M. Ouyang, L.W. Zhu, Forecast of element component content in Pr\Nd extraction process based on PCA- LS_SVM, J. Nanchang Univ. (Nat. Sci.) 37 (6) (2013) 589-593.[14] R.X. Lu, C.M. Ouyang, H. Yang, Application of HSI color model in Pr/Nd component content detection, Comput. Appl. Chem. 30 (10) (2013) 111-115.[15] G.UmaMaheswari, K. Ramar, D.Manimegalai, V. Gomathi, An adaptive region based color texture segmentation using fuzzified distance metric, Appl. Soft Comput. 11 (2) (2011) 2916-2924.[16] J.A.K. Suykens, T. Van Gestel, J. De Brabanter, B. De Moor, J. Vandewalle, Least squares support vector machines, World Scientific, Singapore, 2002.[17] G.C. Cawley, N.L.C. Talbot, Fast exact leave-one-out cross-validation of sparse leastsquares support vector machines, Neural Netw. 17 (10) (2004) 1467-1475.[18] Jae H. Mina, Y.C. Lee, Bankruptcy prediction using support vector machine with optimal choice of kernel function parameters, Expert Syst. Appl. 28 (4) (2005) 603-614.[19] H. Jiang, Z. Yan, X. Liu, Melt index prediction using optimized least squares support vector machines based on hybrid particle swarm optimization algorithm, Neurocomputing 119 (2013) 469-477.[20] S.K. Lahiri, K.C. Ghanta, Prediction of pressure drop of slurry flow in pipeline by hybrid support vector regression and genetic algorithm model, Chin. J. Chem. Eng. 16 (6) (2008) 841-848. |