[1] Raghunath Bajarangbali, SomanathMajhi, Saurabh Pandey, Identification of FOPDT and SOPDT process dynamics using closed loop test, ISA Trans. 53 (4) (2014) 1223-1231.[2] Erding Cong, Minghui Hu, Shandong Tu, Huihe Shao, A new optimal control system design for chemical processes, Chin. J. Chem. Eng. 21 (12) (2013) 1341-1346.[3] HongWang, Lei Xie, Zhihuan Song, A review formodel plant mismatchmeasures in process monitoring, Chin. J. Chem. Eng. 20 (6) (2012) 1039-1046.[4] Peter J.W. Young, Garnier Hugues, Gilson Marion, An optimal instrumental variable approach for identifying hybrid continuous-time Box-Jenkins models, Proceedings of the 14th IFAC Symposium on System Identification (SYSID06), Newcastle 2006, pp. 225-230.[5] C. Young Peter, An instrumental variable approach to ARMA model identification and estimation, Proceedings of the 14th IFAC Symposium on System Identification (SYSID06), Newcastle 2006, pp. 410-415.[6] Stoica Petre, Soderstrom Torsten, Benjamin Friedlander, Optimal instrumental variable estimates of the AR parameters of an ARMA process, IEEE Trans. Autom. Control 30 (11) (1985) 1066-1074.[7] Yao Qiwei, Peter J. Brockwell, Gaussian maximum likelihood estimation for ARMA models II: Spatial processes, Bernoulli 12 (4) (2006) 403-429.[8] D. Lemma,M. Ramasamy, Closed-loop identification of systems with uncertain time delays using ARX-OBF structures, J. Process Control 21 (6) (2011) 1148-1154.[9] Cong Zhang, Fan Yang, Hao Ye, Informative property of the data set in a single-input single-output (SISO) closed-loop system with a switching controller, Chin. J. Chem. Eng. 20 (6) (2012) 1128-1135.[10] Miroslav R. Mataušek, Tomislav B. Šekara, A fast closed-loop process dynamics characterization, ISA Trans. 53 (2) (2014) 489-496.[11] Tóth Roland, Laurain Vincent, Gilson Marion, Hugues Garnier, Instrumental variable scheme for closed-loop LPVmodel identification, Automatica 48 (9) (2012) 2314-2320.[12] Qibing Jin,Wang Zhu, Ruigeng Yang, Jing Wang, An effective direct closed loop identification method for linearmultivariable systemswith colored noise, J. Process Control 24 (5) (2014) 485-492.[13] Mathieu Pouliquen, Olivier Gehan, Eric Pigeon, Bounded-error identification for closed-loop systems, Automatica 50 (7) (2014) 1884-1890.[14] Peter C. Young, An instrumental variable method for real-time identification of a noisy process, Automatica 6 (2) (1970) 271-287.[15] H. Unbehauen, G.P. Rao, Continuous-time approaches to system identification-A survey, Automatica 26 (1) (1990) 23-35.[16] C. Young Peter, Garnier Hugues, Identification and estimation of continuous-time rainfall-flow models, Proceedings of the 14th IFAC Symposium on System Identification (SYSID06), Newcastle 2006, pp. 1276-1281.[17] X. Liu, J. Wang, W. Zheng, Convergence analysis of refined instrumental variable method for continuous-time system identification, IET Control Theory Appl. 5 (7) (2011) 868-877.[18] Gilson Marion, Garnier Hugues, Peter C. Young, Paul Van den Hof, Instrumental variable methods for closed-loop continuous-time model identification, Identification of continuous-time models from sampled data, Springer, London 2008, pp. 133-160.[19] Stoica Petre, Jansson Magnus, Estimating optimal weights for instrumental variable methods, Digital Signal Process. 11 (3) (2001) 252-268.[20] Chen Han-Fu, Jun-Mei Yang, Strongly consistent coefficient estimate for errorsin- variables models, Automatica 41 (6) (2005) 1025-1033.[21] Song Qi-jiang, Chen Han-Fu, Identification of errors-in-variables systems with ARMA observation noises, Syst. Control Lett. 57 (5) (2008) 420-424.[22] Yao Qiwei, Peter J. Brockwell, Gaussian maximum likelihood estimation for ARMA models I: time series, J. Time Ser. Anal. 27 (6) (2006) 857-875.[23] Peter J. Brockwell, Estimation for ARMA models, Time series: Theory and methods, Springer, New York 1991, pp. 238-329.[24] Peter J. Brockwell, Richard A. Davis, Modeling and forecastingwith ARMA processes, Introduction to time series and forecasting, Taylor & Francis, New York 2002, pp. 137-178.[25] Peter C. Young, Identification of transfer function models in closed-loop, Recursive estimation and time-series analysis, Springer, Berlin 2012, pp. 271-287.[26] Peter C. Young, Garnier Hugues, Gilson Marion, Simple refined IV methods of closedloop system identification, Proceedings of the 15th IFAC Symposiumon System Identification (SYSID09), Saint-Malo 2009, pp. 1151-1156.[27] Welsh James, GrahamC. Goodwin, Garnier Hugues, A simple method for bias reduction in time domain least squares parameter estimation, Proceedings of the 3rd IFAC Symposium on System, Structure and Control (SSSC07), Brazil 2007, pp. 590-595.[28] Naik K. Anil, P. Srikanth, Negi Pankaj, IMC tuned PID governor controller for hydro power plant with water hammer effect, Procedia Technol. 4 (2012) 845-853.[29] Qibing Jin, Qie Liu, QiWang, Yuqi Tian, YuanfeiWang, PID controller design based on the time domain information of robust IMC controller using maximum sensitivity, Chin. J. Chem. Eng. 21 (5) (2013) 529-536. |