[1] S.J. Qin, T.A. Badgwell, A survey of industrial model predictive control technology, Control. Eng. Pract. 11 (7) (2003) 733-764.
[2] J. Richalet, Industrial applications of model based predictive control, Automatica 29 (5) (1993) 1251-1274.
[3] G.Wang,W. Yan, S. Chen, X. Zhang, H. Shao,Multi-model predictive control of ultrasupercritical coal-fired power unit, Chin. J. Chem. Eng. 22 (7) (2014) 782-787.
[4] C.R. Cutler, B.L. Ramaker, Dynamic matrix control - A computer control algorithm, Proceedings of Joint Automatic Control Conference, Piscataway, USA, 1980.
[5] R.M.C. De Keyser, A.R. Van Cauwenberghe, Extended prediction self-adaptive control, IFAC Symposium on Identification and System Parameter Estimation, 1985.
[6] R. Soeterboek, Predictive Control: A Unified Approach, Prentice-Hall, New York, 1992.
[7] R.K. Al Seyab, Y. Cao, Nonlinear model predictive control for the ALSTOM gasifier, J. Process Control 16 (8) (2006) 795-808.
[8] M.A. Henson, Nonlinear model predictive control: Current status and future directions, Comput. Chem. Eng. 23 (2) (1998) 187-202.
[9] Z.Y. Zou, M. Yu, Z.Z. Wang, X.H. Liu, Y.Q. Guo, F.B. Zhang, N. Guo, Nonlinear model algorithmic control of a pH neutralization process, Chin. J. Chem. Eng. 21 (4) (2013) 395-400.
[10] B.R. Maner, F.J. Doyle, B.A. Ogunnaike, R.K. Pearson, Nonlinear model predictive control of a simulated multivariable polymerization reactor using second-order Volterra models, Automatica 32 (9) (1996) 1285-1301.
[11] A.L. Cervantes, O.E. Agamennoni, J.L. Figueroa, A nonlinear model predictive control system based on Wiener piecewise linear models, J. Process Control 13 (7) (2003) 655-666.
[12] K.S. Narendra, K. Parthasarathy, Identification and control of dynamical systems using neural networks, IEEE Trans. Neural Networks 1 (1) (1990) 4-27.
[13] C. Cortes, V. Vapnik, Support-vector networks, Mach. Learn. 20 (3) (1995) 273-297.
[14] V.N. Vapnik, Statistical Learning Theory, John Wiley & Sons, New York, 1998.
[15] P. Chen, Y.Z. Lu, Nonlinear model predictive control with the integration of Support Vector Machine and Extremal Optimization, Proceedings of 8th World Congress on Intelligent Control and Automation (WCICA), Jinan, China, 2010.
[16] S. Iplikci, A support vector machine based control application to the experimental three-tank system, ISA Trans. 49 (3) (2010) 376-386.
[17] J.A.K. Suykens, Support vector machines: A nonlinear modelling and control perspective, Eur. J. Control. 7 (2) (2001) 311-327.
[18] V.N. Vapnik, The Nature of Statistical Learning Theory, Springer-Verlag, New York, 2000.
[19] W. Karush, Minima of Functions of Several Variables With Inequalities as Side Constraints(Master's Thesis) Univ. of Chicago, USA, 1939.
[20] H.W. Kuhn, A.W. Tucker, Nonlinear programming, Proceedings of 2nd Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, USA, 1951.
[21] E.F. Camacho, C. Bordons,Model Predictive Control, Springer, Berlin, Germany, 2004.
[22] C.X. Mu, R.M. Zhang, C.Y. Sun, LS-SVMpredictive control based on PSO for nonlinear systems, Control Theory Appl. 27 (2) (2010) 164-168. |