›› 2016, Vol. 24 ›› Issue (2): 278-288.DOI: 10.1016/j.cjche.2015.06.013
Zhiwu Liang, Kaiyun Fu, Raphael Idem, Paitoon Tontiwachwuthikul
收稿日期:
2015-01-28
修回日期:
2015-05-06
出版日期:
2016-02-28
发布日期:
2016-03-14
通讯作者:
Zhiwu Liang
Zhiwu Liang, Kaiyun Fu, Raphael Idem, Paitoon Tontiwachwuthikul
Received:
2015-01-28
Revised:
2015-05-06
Online:
2016-02-28
Published:
2016-03-14
Supported by:
Zhiwu Liang, Kaiyun Fu, Raphael Idem, Paitoon Tontiwachwuthikul. [J]. , 2016, 24(2): 278-288.
Zhiwu Liang, Kaiyun Fu, Raphael Idem, Paitoon Tontiwachwuthikul. Review on current advances, future challenges and consideration issues for post-combustion CO2 capture using amine-based absorbents[J]. , 2016, 24(2): 278-288.
[1] CO2 Emission From Fuel Combustion-Highlights, 2013 Edition, International Energy Agency. Imprimerie Centrale, Luxembourg, 2013. [2] R.S. Haszeldine, Carbon capture and storage: how green can black be? Science 325 (5948) (2009) 1647-1652. [3] Q. Schiermeier, J. Tollefson, T. Scully, A. Witze, O. Morton, Electricity without carbon, Nature 454 (7206) (2008) 816-823. [4] Energy Technology Perspectives, International Energy Agency, Paris, 2008. [5] K.Z. House, C.F. Harvey, M.J. Aziz, D.P. Schrag, The energy penalty of postcombustion CO2 capture & storage and its implications for retrofitting the US installed base, Energy Environ. Sci. 2 (2) (2009) 193-205. [6] E. Favre, Membrane processes and postcombustion carbon dioxide capture: challenges and prospects, Chem. Eng. J. 171 (3) (2011) 782-793. [7] A.B. Rao, E.S. Rubin, A technical, economic, and environmental assessment of amine-based CO2 capture technology for power plant greenhouse gas control, Environ. Sci. Technol. 36 (20) (2002) 4467-4475. [8] G.T. Rochelle, Amine scrubbing for CO2 capture, Science 325 (5948) (2009) 1652-1654. [9] H. Yang, S. Fan, X. Lang, Y.Wang, J. Nie, Economic comparison of three gas separation technologies for CO2 capture from power plant flue gas, Chin. J. Chem. Eng. 19 (4) (2011) 615-620. [10] D.M. D'Alessandro, B. Smit, J.R. Long, Carbon dioxide capture: prospects for new materials, Angew. Chem. Int. Ed. 49 (35) (2010) 6058-6082. [11] M. Ramdin, T.W. de Loos, T.J.H. Vlugt, State-of-the-art of CO2 capture with ionic liquids, Ind. Eng. Chem. Res. 51 (24) (2012) 8149-8177. [12] K. Sumida, D.L. Rogow, J.A. Mason, T.M. McDonald, E.D. Bloch, Z.R. Herm, T.H. Bae, J.R. Long, Carbon dioxide capture inmetal-organic frameworks, Chem. Rev. 112 (2) (2012) 724-781. [13] L. Wei, Y. Jing, Z. Gao, Y. Wang, Development of a pentaethylenehexaminemodified solid support adsorbent for CO2 capture from model flue gas, Chin. J. Chem. Eng. 23 (2) (2015) 366-371. [14] M. Pera-Titus, Porous inorganic membranes for CO2 capture: present and prospects, Chem. Rev. 114 (2) (2014) 1413-1492. [15] A.S. Bhown, B.C. Freeman, Analysis and status of post-combustion carbon dioxide capture technologies, Environ. Sci. Technol. 45 (20) (2011) 8624-8632. [16] D. Aaron, C. Tsouris, Separation of CO2 from flue gas: A review, Sep. Sci. Technol. 40 (1-3) (2005) 321-348. [17] A.L. Kohl, R. Nielsen, Gas Purification, Gulf Professional Publishing, 1997. [18] B.T. Zhao, Y.X. Su,W.W. Tao, L.L. Li, Y.C. Peng, Post-combustion CO2 capture by aqueous ammonia: A state-of-the-art review, Int. J. Greenhouse Gas Control 9 (2012) 355-371. [19] N. Yang, H. Yu, L. Li, D. Xu, W. Han, P. Feron, Aqueous ammonia (NH3) based post combustion CO2 capture: A review, Oil Gas Sci. Technol.-Rev. IFP Energies Nouv. (2013)http://dx.doi.org/10.2516/ogst/2013160. [20] P.D. Vaidya, E.Y. Kenig, CO2-alkanolamine reaction kinetics: A review of recent studies, Chem. Eng. Technol. 30 (11) (2007) 1467-1474. [21] T. Sema, A. Naami, K. Fu, M. Edali, H. Liu, H. Shi, Z. Liang, R. Idem, P. Tontiwachwuthikul, Comprehensive mass transfer and reaction kinetics studies of CO2 absorption into aqueous solutions of blended MDEA-MEA, Chem. Eng. J. 209 (2012) 501-512. [22] B. Mandal, S.S. Bandyopadhyay, Simultaneous absorption of CO2 and H2S into aqueous blends of N-methyldiethanolamine and diethanolamine, Environ. Sci. Technol. 40 (19) (2006) 6076-6084. [23] A. Samanta, S.S. Bandyopadhyay, Absorption of carbon dioxide into aqueous solutions of piperazine activated 2-amino-2-methyl-1-propanol, Chem. Eng. Sci. 64 (6) (2009) 1185-1194. [24] E. Chen, Carbon Dioxide Absorption into Piperazine Promoted Potassium Carbonate Using Structured Packing(Ph.D. Thesis) The University of Texas at Austin, 2007. [25] S. Ma'mun, J.P. Jakobsen, H.F. Svendsen, O. Juliussen, Experimental and modeling study of the solubility of carbon dioxide in aqueous 30 mass % 2-((2-aminoethyl)amino)ethanol solution, Ind. Eng. Chem. Res. 45 (8) (2006) 2505-2512. [26] Z. Xu, S.Wang, C. Chen, Kinetics study on CO2 absorption with aqueous solutions of 1,4-butanediamine, 2-(diethylamino)-ethanol, and their mixtures, Ind. Eng. Chem. Res. 52 (29) (2013) 9790-9802. [27] T. Sema,A.Naami, K. Fu,G. Chen, Z. Liang, R. Idem, P. Tontiwachwuthikul, Comprehensive mass transfer and reaction kinetics studies of a novel reactive 4-diethylamino-2-butanol solvent for capturing CO2, Chem. Eng. Sci. 100 (2013) 183-194. [28] H. Shi, T. Sema, A. Naami, Z. Liang, R. Idem, P. Tontiwachwuthikul, 13C NMR spectroscopy of a novel amine species in the DEAB-CO2-H2O system: VLE model, Ind. Eng. Chem. Res. 51 (25) (2012) 8608-8615. [29] T. Sema, A. Naami, Z. Liang, R. Idem, P. Tontiwachwuthikul, H. Shi, P.Wattanaphan, A. Henni, Analysis of reaction kinetics of CO2 absorption into a novel reactive 4-diethylamino-2-butanol solvent, Chem. Eng. Sci. 81 (2012) 251-259. [30] A. Hartono, E.F. da Silva, H.F. Svendsen, Kinetics of carbon dioxide absorption in aqueous solution of diethylenetriamine (DETA), Chem. Eng. Sci. 64 (14) (2009) 3205-3213. [31] X. Zhang, K. Fu, Z. Liang, W. Rongwong, Z. Yang, R. Idem, P. Tontiwachwuthikul, Experimental studies of regeneration heat duty for CO2 desorption from diethylenetriamine (DETA) solution in a stripper column packed with Dixon ring random packing, Fuel 136 (2014) 261-267. [32] K. Fu, G. Chen, T. Sema, X. Zhang, Z. Liang, R. Idem, P. Tontiwachwuthikul, Experimental study on mass transfer and prediction using artificial neural network for CO2 absorption into aqueous DETA, Chem. Eng. Sci. 100 (2013) 195-202. [33] K. Fu, T. Sema, Z. Liang, H. Liu, Y. Na, H. Shi, R. Idem, P. Tontiwachwuthikul, Investigation ofmass-transfer performance for CO2 absorption into diethylenetriamine (DETA) in a randomly packed column, Ind. Eng. Chem. Res. 51 (37) (2012) 12058-12064. [34] K. Robinson, A. McCluskey, M.I. Attalla, The effectmolecular structural variations has on the CO2 absorption characteristics of heterocyclic amines, Recent Advances in Post-combustion CO2 Capture Chemistry, 1097, American Chemical Society 2012, pp. 1-27. [35] A.K. Chakraborty, G. Astarita, K.B. Bischoff, CO2 absorption in aqueous solutions of hindered amines, Chem. Eng. Sci. 41 (4) (1986) 997-1003. [36] P. Singh, J.P.M. Niederer, G.F. Versteeg, Structure and activity relationships for amine based CO2 absorbents-I, Int. J. Greenhouse Gas Control 1 (1) (2007) 5-10. [37] P. Singh, J.P.M. Niederer, G.F. Versteeg, Structure and activity relationships for amine-based CO2 absorbents-II, Chem. Eng. Res. Des. 87 (2) (2009) 135-144. [38] P.L. Carrette, R. Cadours, P. Boucot, P. Mougin, M. Prigent, A. Gibert, M. Jacquin, New solvent for CO2 with low energy of regeneration, 10thMeeting of the IEA International Post-Combustion CO2 Capture Network, 24-25th May 2007, Lyon, France, 2007. [39] J. Zhang, O. Nwani, Y. Tan, D.W. Agar, Carbon dioxide absorption into biphasic amine solvent with solvent loss reduction, Chem. Eng. Res. Des. 89 (8) (2011) 1190-1196. [40] L. Raynal, P. Alix, P.-A. Bouillon, A. Gomez, M.l.F. de Nailly, M. Jacquin, J. Kittel, A. di Lella, P. Mougin, J. Trapy, The DMX™ process: an original solution for lowering the cost of post-combustion carbon capture, Energy Procedia 4 (2011) 779-786. [41] D. Agar, Y. Tan, X. Zhang, CO2 removal processes by means of absorption using thermomorphic biphasic aqueous amine solutions. PatentWO/2008/015217, (2008). [42] L.A. Blanchard, D. Hancu, E.J. Beckman, J.F. Brennecke, Green processing using ionic liquids and CO2, Nature 399 (6731) (1999) 28-29. [43] C. Cadena, J.L. Anthony, J.K. Shah, T.I. Morrow, J.F. Brennecke, E.J. Maginn, Why is CO2 so soluble in imidazolium-based ionic liquids? J. Am. Chem. Soc. 126 (16) (2004) 5300-5308. [44] E.D. Bates, R.D. Mayton, I. Ntai, J.H. Davis, CO2 capture by a task-specific ionic liquid, J. Am. Chem. Soc. 124 (6) (2002) 926-927. [45] L.M.G. Sanchez, G.W. Meindersma, A.B. de Haan, Solvent properties of functionalized ionic liquids for CO2 absorption, Chem. Eng. Res. Des. 85 (A1) (2007) 31-39. [46] B.E. Gurkan, J.C. de la Fuente, E.M. Mindrup, L.E. Ficke, B.F. Goodrich, E.A. Price,W.F. Schneider, J.F. Brennecke, Equimolar CO2 absorption by anion-functionalized ionic liquids, J. Am. Chem. Soc. 132 (7) (2010) 2116-2117. [47] G.R. Yu, S.J. Zhang, G.H. Zhou, X.M. Liu, X.C. Chen, Structure, interaction and property of amino-functionalized imidazolium ILs by molecular dynamics simulation and ab initio calculation, AICHE J. 53 (12) (2007) 3210-3221. [48] K.E. Gutowski, E.J. Maginn, Amine-functionalized task-specific ionic liquids: A mechanistic explanation for the dramatic increase in viscosity upon complexation with CO2 from molecular simulation, J. Am. Chem. Soc. 130 (44) (2008) 14690-14704. [49] J. Xu, S.Wang, W. Yu, Q. Xu,W. Wang, J. Yin,Molecular dynamics simulation for the binary mixtures of high pressure carbon dioxide and ionic liquids, Chin. J. Chem. Eng. 22 (2) (2014) 153-163. [50] G.T. Rochelle, S. Bishnoi, S. Chi, H. Dang, J. Santos, Research Needs for CO2 Capture from Flue Gas by Aqueous Absorption/Stripping, US Department of Energy, Pittsburgh, PA, USA, 2001. [51] W. Horwitz, Association of Official Analytical Chemists (AOAC) Methods, 12th ed. George Banta Company, Menasha, WI, 1975. [52] F.Y. Jou, A.E. Mather, F.D. Otto, The solubility of CO2 in a 30 mass percent monoethanolamine solution, Can. J. Chem. Eng. 73 (1) (1995) 140-147. [53] I. Attalla Moetaz, Recent advances in post-combustion CO2 capture chemistry, Am. Chem. Soc. 1097 (2012). [54] A.V. Rayer, K.Z. Sumon, T. Sema, A. Henni, R.O. Idem, P. Tontiwachwuthikul, Part 5c: solvent chemistry: solubility of CO2 in reactive solvents for post-combustion CO2, Carbon Manag. 3 (5) (2012) 467-484. [55] Q. Yang,M. Bown, A. Ali, D.Winkler, G. Puxty, M. Attalla, A carbon-13 NMR study of carbon dioxide absorption and desorption with aqueous amine solutions, Energy Procedia 1 (2009) 955-962. [56] J.Y. Park, S.J. Yoon, H. Lee, Effect of steric hindrance on carbon dioxide absorption into new amine solutions: thermodynamic and spectroscopic verification through solubility and NMR analysis, Environ. Sci. Technol. 37 (8) (2003) 1670-1675. [57] G. Richner, G. Puxty, Assessing the chemical speciation during CO2 absorption by aqueous amines using in situ FTIR, Ind. Eng. Chem. Res. 51 (44) (2012) 14317-14324. [58] Y.S. Choi, J. Im, J.K. Jeong, S.Y. Hong, H.G. Jang, M. Cheong, J.S. Lee, H.S. Kim, CO2 absorption and desorption in an aqueous solution of heavily hindered alkanolamine: structural elucidation of CO2-containing species, Environ. Sci. Technol. 48 (7) (2014) 4163-4170. [59] A.F. Ciftja, A. Hartono, H.F. Svendsen, 13C NMR as a method species determination in CO2 absorbent systems, Int. J. Greenhouse Gas Control 16 (2013) 224-232. [60] H. Shi, A. Naami, R.O. Idem, P. Tontiwachwuthikul, 1D NMR analysis of a quaternary MEA-DEAB-CO2-H2O amine system: Liquid phase speciation and vapor-liquid equilibria at CO2 absorption and solvent regeneration conditions, Ind. Eng. Chem. Res. 53 (2014) 8577-8591. [61] W. Böttinger, M. Maiwald, H. Hasse, Online NMR spectroscopic study of species distribution in MEA-H2O-CO2 and DEA-H2O-CO2, Fluid Phase Equilib. 263 (2) (2008) 131-143. [62] P. Usubharatana, A Study of Monoethanolamine-Methanol Hybrid Solvents for Carbon Dioxide Capture by Absorption(Ph.D. Thesis) The University of Regina, 2009. [63] A. Hartono, E.F. da Silva, H. Grasdalen, H.F. Svendsen, Qualitative determination of species in DETA-H2O-CO2 system using 13C NMR spectra, Ind. Eng. Chem. Res. 46 (1) (2007) 249-254. [64] R. Kent, B. Eisenberg, Better data for amine treating, Hydrocarb. Process. 55 (2) (1976) 87-90. [65] K.S. Pitzer, Thermodynamics of electrolytes. I. Theoretical basis and general equations, J. Phys. Chem. 77 (2) (1973) 268-277. [66] R. Deshmukh, A. Mather, A mathematical model for equilibrium solubility of hydrogen sulfide and carbon dioxide in aqueous alkanolamine solutions, Chem. Eng. Sci. 36 (2) (1981) 355-362. [67] C.C. Chen, H. Britt, J. Boston, L. Evans, Local composition model for excess Gibbs energy of electrolyte systems. Part I: single solvent, single completely dissociated electrolyte systems, AICHE J. 28 (4) (1982) 588-596. [68] K. Thomsen, P. Rasmussen, Modeling of vapor-liquid-solid equilibrium in gas-aqueous electrolyte systems, Chem. Eng. Sci. 54 (12) (1999) 1787-1802. [69] W. Fürst, H. Renon, Representation of excess properties of electrolyte solutions using a new equation of state, AICHE J. 39 (2) (1993) 335-343. [70] J. Button, K. Gubbins, SAFT prediction of vapour-liquid equilibria of mixtures containing carbon dioxide and aqueous monoethanolamine or diethanolamine, Fluid Phase Equilib. 158 (1999) 175-181. [71] I. Kim, H.F. Svendsen, Heat of absorption of carbon dioxide (CO2) in monoethanolamine (MEA) and 2-(aminoethyl) ethanolamine (AEEA) solutions, Ind. Eng. Chem. Res. 46 (17) (2007) 5803-5809. [72] A. Sherwood, J. Prausnitz, The heat of solution of gases at high pressure, AICHE J. 8 (4) (1962) 519-521. [73] I. Kim, H.F. Svendsen, Comparative study of the heats of absorption of postcombustion CO2 absorbents, Int. J. Greenhouse Gas Control 5 (3) (2011) 390-395. [74] M.W. Arshad, P.L. Fosbol, N. von Solms, H.F. Svendsen, K. Thomsen, Heat of absorption of CO2 in phase change solvents: 2-(diethylamino)ethanol and 3-(methylamino)propylamine, J. Chem. Eng. Data 58 (7) (2013) 1974-1988. [75] M. Caplow, Kinetics of carbamate formation and breakdown, J. Am. Chem. Soc. 90 (24) (1968) 6795-6803. [76] P. Danckwerts, The reaction of CO2 with ethanolamines, Chem. Eng. Sci. 34 (4) (1979) 443-446. [77] J.E. Crooks, J.P. Donnellan, Kinetics and mechanism of the reaction between carbon dioxide and amines in aqueous solution, J. Chem. Soc. Perkin Trans. 2 (4) (1989) 331-333. [78] A. Aboudheir, P. Tontiwachwuthikul, A. Chakma, R. Idem, Kinetics of the reactive absorption of carbon dioxide in high CO2-loaded, concentrated aqueous monoethanolamine solutions, Chem. Eng. Sci. 58 (23-24) (2003) 5195-5210. [79] H. Kierzkowska-Pawlak, A. Chacuk, M. Siemieniec, Reaction kinetics of CO2 in aqueous 2-(2-aminoethylamino)ethanol solutions using a stirred cell reactor, Int. J. Greenhouse Gas Control 24 (2014) 106-114. [80] X. Luo, A. Hartono, H.F. Svendsen, Comparative kinetics of carbon dioxide absorption in unloaded aqueous monoethanolamine solutions using wetted wall and string of discs columns, Chem. Eng. Sci. 82 (2012) 31-43. [81] X. Luo, A. Hartono, S. Hussain, H.F. Svendsen, Mass transfer and kinetics of carbon dioxide absorption into loaded aqueous monoethanolamine solutions, Chem. Eng. Sci. 123 (2015) 57-69. [82] D.J. Seo, W.H. Hong, Effect of piperazine on the kinetics of carbon dioxide with aqueous solutions of 2-amino-2-methyl-1-propanol, Ind. Eng. Chem. Res. 39 (6) (2000) 2062-2067. [83] T. Sema, A. Naami, Z.W. Liang, R. Idem, H. Ibrahim, P. Tontiwachwuthikul, 1D absorption kineticsmodeling of CO2-DEAB-H2O system, Int. J. Greenhouse Gas Control 12 (2013) 390-398. [84] M. Edali, R. Idem, A. Aboudheir, 1D and 2D absorption-rate/kinetic modeling and simulation of carbon dioxide absorption into mixed aqueous solutions of MDEA and PZ in a laminar jet apparatus, Int. J. Greenhouse Gas Control 4 (2) (2010) 143-151. [85] H. Liu, T. Sema, Z. Liang, K. Fu, R. Idem, Y. Na, P. Tontiwachwuthikul, CO2 absorption kinetics of 4-diethylamine-2-butanol solvent using stopped-flow technique, Sep. Purif. Technol. 136 (2014) 81-87. [86] J.G.M.Monteiro, S.Hussain, S. Majeed, H.Mba, E.O. Hartono, A. Knuutila,H. Svendsen, H.F., Kinetics of CO2 absorption by aqueous 3-(methylamino)propylamine solutions: experimental results and modeling, AICHE J. 60 (11) (2014) 3792-3803. [87] R.H. Perry, D. Green, J. Maloney, Perry's Handbook of Chemical Engineering, 7th ed. McGraw-Hill Book Company, New York, 1997. [88] G. Zarca, I. Ortiz, A. Urtiaga, Recovery of carbon monoxide from flue gases by reactive absorption in ionic liquid imidazolium chlorocuprate(I): mass transfer coefficients, Chin. J. Chem. Eng. 23 (5) (2015) 769-774. [89] H. Jin, S. Yang, G. He, D. Liu, Z. Tong, J. Zhu, Gas-liquidmass transfer characteristics in a gas-liquid-solid bubble column under elevated pressure and temperature, Chin. J. Chem. Eng. 22 (9) (2014) 955-961. [90] W. Yang, X. Yu, J. Mi, W. Wang, J. Chen, Mass transfer performance of structured packings in a CO2 absorption tower, Chin. J. Chem. Eng. 23 (1) (2015) 42-49. [91] Z.Y. Yu, B.T. Zhao, S.S. He, Mass transfer performance of enhanced CO2 absorption in swirling flow field, CIESC J. 66 (2015) 1012-1018. [92] X. Jia,W. Hu, X. Yuan, K. Yu, Effect of surfactant type on interfacial area and liquid mass transfer for CO2 absorption in a bubble column, Chin. J. Chem. Eng. 23 (3) (2015) 476-481. [93] A. Aroonwilas, P. Tontiwachwuthikul, A. Chakma, Effects of operating and design parameters on CO2 absorption in columns with structured packings, Sep. Purif. Technol. 24 (3) (2001) 403-411. [94] R.E. Tsai, A.F. Seibert, R.B. Eldridge, G.T. Rochelle, A dimensionless model for predicting the mass-transfer area of structured packing, AICHE J. 57 (5) (2011) 1173-1184. [95] K. Onda, H. Takeuchi, Y. Okumoto, Mass transfer coefficients between gas and liquid phases in packed columns, J. Chem. Eng. Jpn 1 (1) (1968) 56-62. [96] M.H. De Brito, U. Von Stockar, A.M. Bangerter, P. Bomio, M. Laso, Effective masstransfer area in a pilot plant column equipped with structured packings and with ceramic rings, Ind. Eng. Chem. Res. 33 (3) (1994) 647-656. [97].L. Kohl, F.C. Riesenfeld, Gas Purification, 4th ed. Gulf Publishing, Houston, TX, 1985. [98] A. Aroonwilas, P. Tontiwachwuthikul,Mass transfer coefficients and correlation for CO2 absorption into 2-amino-2-methyl-1-propanol (AMP) using structured packing, Ind. Eng. Chem. Res. 37 (2) (1998) 569-575. [99] A. Aroonwilas, P. Tontiwachwuthikul, Mechanistic model for prediction of structured packingmass transfer performance in CO2 absorption with chemical reactions, Chem. Eng. Sci. 55 (18) (2000) 3651-3663. [100] J. Pandya, Adiabatic gas absorption and stripping with chemical reaction in packed towers, Chem. Eng. Commun. 19 (4-6) (1983) 343-361. [101] A. Aboudheir, P. Tontiwachwuthikul, R. Idem, Rigorous model for predicting the behavior of CO2 absorption into AMP in packed-bed absorption columns, Ind. Eng. Chem. Res. 45 (8) (2006) 2553-2557. [102] F.M. Khan, V. Krishnamoorthi, T. Mahmud, Modelling reactive absorption of CO2 in packed columns for post-combustion carbon capture applications, Chem. Eng. Res. Des. 89 (9) (2011) 1600-1608. [103] B. Hanley, C.C. Chen, Newmass-transfer correlations for packed towers, AICHE J. 58 (1) (2012) 132-152. [104] K. Fu, G. Chen, Z. Liang, T. Sema, R. Idem, P. Tontiwachwuthikul, Analysis of mass transfer performance of monoethanolamine-based CO2 absorption in a packed column using artificial neural networks, Ind. Eng. Chem. Res. 53 (11) (2014) 4413-4423. [105] R. Idem,M.Wilson, P. Tontiwachwuthikul, A. Chakma, A. Veawab, A. Aroonwilas, D. Gelowitz, Pilot plant studies of the CO2 capture performance of aqueous MEA and mixedMEA/MDEA solvents at the University of Regina CO2 capture technology development plant and the Boundary Dam CO2 capture demonstration, Ind. Eng. Chem. Res. 45 (8) (2006) 2414-2420. [106] R. Idem, H. Shi, D. Gelowitz, P. Tontiwachwuthikul, Catalyticmethod and apparatus for separating a gas component from an incoming gas stream. WO Patent 2011/ 12013821, (2011). [107] H.C. Shi, A. Naami, R. Idem, P. Tontiwachwuthikul, Catalytic and non catalytic solvent regeneration during absorption-based CO2 capture with single and blended reactive amine solvents, Int. J. Greenhouse Gas Control 26 (2014) 39-50. [108] L.X. Kang, Y.Z. Liu, Step-by step retrofit of heat exchanger network with heat pump installation and multi-objective optimization strategies, CIESC J. 65 (2014) 3976-3983. [109] C. Alie, L. Backham, E. Croiset, P.L. Douglas, Simulation of CO2 capture using MEA scrubbing: a flowsheet decomposition method, Energy Convers. Manag. 46 (3) (2005) 475-487. [110] B.A. Oyenekan, G.T. Rochelle, Alternative stripper configurations for CO2 capture by aqueous amines, AICHE J. 53 (12) (2007) 3144-3154. [111] H. Gao, L. Zhou, Z. Liang, R.O. Idem, K. Fu, T. Sema, P. Tontiwachwuthikul, Comparative studies of heat duty and total equivalent work of a new heat pump distillation with split flow process, conventional split flow process, and conventional baseline process for CO2 capture using monoethanolamine, Int. J. Greenhouse Gas Control 24 (2014) 87-97. [112] Z. Liang, H. Gao, W. Rongwong, Y. Na, Comparative studies of stripper overhead vapor integration-based configurations for post-combustion CO2 capture, Int. J. Greenhouse Gas Control 34 (2015) 75-84. [113] L. Polderman, C. Dillon, A. Steele,Whymonoethanolamine solution breaks down in gas-treating service, Oil Gas J. 54 (2) (1955) 180-183. [114] S. Chi, G.T. Rochelle, Oxidative degradation of monoethanolamine, Ind. Eng. Chem. Res. 41 (17) (2002) 4178-4186. [115] H. Lepaumier, E.F. da Silva, A. Einbu, A. Grimstvedt, J.N. Knudsen, K. Zahlsen, H.F. Svendsen, Comparison of MEA degradation in pilot-scale with lab-scale experiments, Energy Procedia 4 (2011) 1652-1659. [116] H. Lepaumier, D. Picq, P.-L. Carrette, New amines for CO2 capture. II. Oxidative degradation mechanisms, Ind. Eng. Chem. Res. 48 (20) (2009) 9068-9075. [117] C. Gouedard, D. Picq, F. Launay, P.L. Carrette, Amine degradation in CO2 capture. I. A review, Int. J. Greenhouse Gas Control 10 (2012) 244-270. [118] T. Wang, K.J. Jens, Oxidative degradation of aqueous 2-amino-2-methyl-1-propanol solvent for postcombustion CO2 capture, Ind. Eng. Chem. Res. 51 (18) (2012) 6529-6536. [119] A.K. Voice, G.T. Rochelle, Products and process variables in oxidation of monoethanolamine for CO2 capture, Int. J. Greenhouse Gas Control 12 (2013) 472-477. [120] G. L閛nard, A. Voice, D. Toye, G. Heyen, Influence of dissolved metals and oxidative degradation inhibitors on the oxidative and thermal degradation of monoethanolamine in postcombustion CO2 capture, Ind. Eng. Chem. Res. 53 (47) (2014) 18121-18129. [121] T. Bacon, Amine solution quality control through design, operation and correction, Proceedings-1987 Gas Conditioning Conference, The University of Oklahoma, Norman, Oklahoma, 1987, 1987. [122] W. ElMoudir, T. Supap, C. Saiwan, R. Idem, P. Tontiwachwuthikul, Part 6: solvent recycling and reclaiming issues, Carbon Manag. 3 (5) (2012) 485-509. [123] A.L. Cummings, G.D. Smith, D.K. Nelsen, Advances in amine reclaiming-why there's no excuse to operate a dirty amine system, Laurance Reid Gas Conditioning Conference, 2007, 2007. [124] T.L.Wang, J. Hovland, K.J. Jens, Amine reclaiming technologies in post-combustion carbon dioxide capture, J. Environ. Sci. (China) 27 (2015) 276-289. [125] A.L. Cummings, G.D. Smith, D.K. Nelsen, Advances in amine reclaiming-why there's no excuse to operate a dirty amine system, Laurence Reid Gas Conditioning Conference, Dickinson TX, USA, 2007, 2007. [126] N. Verma, A. Verma, Amine system problems arising from heat stable salts and solutions to improve system performance, Fuel Process. Technol. 90 (4) (2009) 483-489. [127] I. Raphael, S. Teeradet, S. Chintana, E. Walid, T. Paitoon, Solvent recycling and reclaiming in CO2 capture processes, Recent Progress and New Developments in Post-combustion Carbon-capture Technology with Reactive Solvents, Future Science Ltd. 2013, pp. 142-160. [128] R. Idem, P. Tontiwachwuthikul, C. Saiwan, T. Supap, P. Pitipuech, Method for inhibiting amine degradation during CO2 capture from a gas stream. In Google Patents: 2012. [129] M.G. Fontana, Corrosion Engineering, Tata McGraw-Hill Education, 2005. [130] A. Veawab, P. Tontiwachwuthikul, A. Chakma, Corrosion behavior of carbon steel in the CO2 absorption process using aqueous amine solutions, Ind. Eng. Chem. Res. 38 (10) (1999) 3917-3924. [131] W. Tanthapanichakoon, A. Veawab, B. McGarvey, Electrochemical investigation on the effect of heat-stable salts on corrosion in CO2 capture plants using aqueous solution of MEA, Ind. Eng. Chem. Res. 45 (8) (2006) 2586-2593. [132] I.R. Soosaiprakasam, A. Veawab, Corrosion and polarization behavior of carbon steel in MEA-based CO2 capture process, Int. J. Greenhouse Gas Control 2 (4) (2008) 553-562. [133] A. Veawab, P. Tontiwachwuthikul, S.D. Bhole, Studies of corrosion and corrosion control in a CO2-2-amino-2-methyl-1-propanol (AMP) environment, Ind. Eng. Chem. Res. 36 (1) (1997) 264-269. [134] A. Bello, R.O. Idem, Comprehensive study of the kinetics of the oxidative degradation of CO2 loaded and concentrated aqueous monoethanolamine (MEA) with and without sodium metavanadate during CO2 absorption from flue gases, Ind. Eng. Chem. Res. 45 (8) (2006) 2569-2579. [135] M. Antonijevic, M. Petrovic, Copper corrosion inhibitors. A review, Int. J. Electrochem. Sci. 3 (1) (2008) 1-28. [136] G.S. Goff, G.T. Rochelle, Monoethanolamine degradation: O2 mass transfer effects under CO2 capture conditions, Ind. Eng. Chem. Res. 43 (20) (2004) 6400-6408. [137] V. Jovancicevic, S. Ramachandran, P. Prince, Inhibition of carbon dioxide corrosion of mild steel by imidazolines and their precursors, Corrosion 55 (5) (1999) 449-455. |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||