[1] A.H. Lefebvre, Atomization and sprays, Hemisphere Pub. Corp., New York, 1989. [2] C.Mirgain, C. Briens, M.D. Pozo, R. Loutaty, M. Bergougnou, Modeling of feed vaporization in fluid catalytic cracking, Ind. Eng. Chem. Res. 39 (2000) 4392-4399. [3] R.Wang, C. Li, X. He, B. Chen, A novel close-loop strategy for integrating process operations of fluidized catalytic cracking unit with production planning optimization, Chin. J. Chem. Eng. 16 (2008) 909-915. [4] C. Liu, Y. Guo, Mechanisms for particle clustering in upward gas-solid flows, Chin. J. Chem. Eng. 14 (2006) 141-148. [5] S. Wang, H. Lu, J. Gao, C. Xu, D. Sun, Numerical predication of cracking reaction of particle clusters in fluid catalytic cracking riser reactors, Chin. J. Chem. Eng. 16 (2008) 670-678. [6] E.B. Babinsky, P.E. Sojka, Modeling drop size distributions, Prog. Energy Combust. Sci. 28 (2002) 303-329. [7] R.W. Sellens, T.A. Brzustowski, A prediction of the drop size distribution in a spray from first principles, At. Spray Technol. (1985) 89-102. [8] X. Li, R.S. Tankin, Droplet size distribution: A derivation of a Nukiyama-Tanasawa type distribution function, Combust. Sci. Technol. 56 (1987) 65-76. [9] X. Li, L.P. Chin, Comparison between experiments and predictions based on maximum entropy for sprays from a pressure atomizer, Combust. Flame 86 (1991) 73-89. [10] G.W.M. Vander, H. Vermeer, Prediction of drop size distributions in sprays using the maximumentropy formalism: The effect of satellite formation, Int. J. Multiphase Flow 20 (1994) 363-381. [11] V. Semiao, P. Andrade, M.D.G. Carvalho, Spray characterization: Numerical prediction of Sauter mean diameter and droplet size distribution, Fuel 75 (1996) 1707-1714. [12] M.M. El-kotb, Fuel atomization for spray modeling, Prog. Energy Combust. Sci. 8 (1982) 61-91. [13] N. Dombrowski, W.R. Johns, The aerodynamic instability and disintegration of viscous liquid sheets, Chem. Eng. Sci. 18 (1963) 203-214. [14] C. Dumouchel, S. Boyaval, Use of the maximum entropy formalism to determine drop size distribution characteristics, Part. Part. Syst. Charact. 16 (1999) 177-184. [15] G. Aguilar, B. Majaron, W. Verkruysse, Y. Zhou, J.S. Nelson, E.J. Lavernia, Theoretical and experimental analysis of droplet diameter, temperature and evaporation rate evaluation in cryogenic spray, Int. J. Heat Mass Transf. 44 (2001) 3201-3211. [16] H. Sun, B. Bai, J. Yan, H. Zhang, Single-jet spray mixing with a confined cross-flow, Chin. J. Chem. Eng. 21 (2013) 14-24. [17] J. Li, S. Huang, X.Wang, Numerical study of steam-water separators with wave-type vanes, Chin. J. Chem. Eng. 15 (2007) 492-498. [18] Y.R. Sivathanu, J.P. Gore, A discrete probability function method for the equation of radiative transfer, J. Quant. Spectrosc. Radiat. Transf. 49 (1993) 269-280. [19] S.D. Sovani, P.E. Sojka, Y.R. Sivathanu, Prediction of drop size distributions from first principles: Joint PDF effects, Atomization Sprays 10 (2000) 587-602. [20] S.D. Sovani, P.E. Sojka, Y.R. Sivathanu, Prediction of drop size distributions from first principles: The influence of fluctuations in relative velocity and liquid physical properties, Atomization Sprays 9 (1999) 133-152. [21] T. Li, K. Pougatch, M. Salcudean, D. Grecov, Numerical modeling of an evaporative spray in a riser, Powder Technol. 201 (2010) 213-229. [22] V.A. Iyer, J. Abraham, V.Magi, Exploring injected droplet size effects on steady liquid penetration in a Diesel spray with a two-fluid model, Int. J. Heat Mass Transf. 45 (2002) 519-531. [23] J.A. Bassard, R.E. Peck, Droplet size distribution effects in spray combustion, Presented at the 26th Int. Symp. Combust. Inst. Napoli 1996, pp. 1671-1677. [24] J. Hayashi, J. Fukui, F. Akamatsu, Effects of fuel drop size distribution on soot formation in spray flames formed in laminar counter flow, Proc. Combust. Inst. (2013) 1562-1569. [25] J. Hayashi, H. Watanabe, R. Kurose, F. Akamatsu, Effects of fuel droplet size on soot formation in spray flames formed in a laminar counter-flow, Combust. Flame 148 (2011) 2560-2569. [26] P. Deepu, S. Basu, R. Kumar, Vaporization dynamics of functional droplets in a hot laminar air jet, Int. J. Heat Mass Transf. 56 (2013) 69-79. [27] K. Yokota, S.Matsuoka, An experimental study of fuel spray in a diesel engine, Trans. Jpn. Soc. Mech. Eng. 43 (1973) 3455-3464. [28] H. Hiroyasu,M. Arai, Fuel spray penetration and spray angle in diesel engines, Trans. Jpn. Soc. Mech. Eng. 21 (1980) 5-11. [29] T.R. Ohrn, D.W. Senser, A.H. Lefebvre, Geometrical effects on spray cone angle for plain-orifice atomizers, At. Sprays 1 (1991) 137-154. [30] A.H. Lefebvre, D.R. Ballal, Gas turbine combustion, Taylor & Francis Group, 2010. [31] D.S.J. Jones, P.P. Pujadó, Handbook of petroleum processing, Springer, Dordrecht, 2006. [32] I.S. Han, C.B. Chung, J.B. Riggs, Modeling of a fluidized catalytic cracking process, Comput. Chem. Eng. 24 (2000) 1682-1687. [33] N. Ashgriz, Handbook of atomization and sprays: Theory and applications, Springer, Dordrecht Heidelberg London, New York, 2011. [34] S. Kim, C.S. Lee, D.J. Lee, Modeling of binary droplet collisions for application to interimpingement sprays, Int. J. Multiphase Flow 35 (2009) 533-549. [35] P.J. O'Rourke, Collective drop effects on vaporizing liquid sprays(Ph.D. thesis) Mech. Aero. Eng., Princeton University, USA, 1981. [36] Y. Behjat, S. Shahhosseini, M.M. Ahmadi, Modeling gas oil spray coalescence and vaporization in gas solid riser reactor, Int. Commun. Heat Mass Transfer 37 (2010) 935-943. [37] V. Mathiesen, T. Solberg, B.H. Hjertager, An experimental and computational study of multiphase flow behavior in a circulating fluidized bed, Int. J. Multiphase Flow 26 (2000) 387-418. [38] S. Bhowmick, N.A. Baveja, C.P. Shringi, K.T. Shenoy, S.K. Ghosh, Pressure fluctuations in a liquid-sprayed gas fluidized bed, Chemical Engineering Division, Ind. Eng. Chem. Res. 53 (2014) 12631-12638. [39] A.H. Lefebvre, Fuel injection, Gas turbine combustion, McGraw-Hill Book Co., 1983 (10th chapter). [40] K. Sridhara, Gas making in the dilution zone of a combustions chamber, Technical Report (TN-30)., National Aeronautical Laboratory, Bangalore, India, 1970. [41] J.S. Buchanan, Analysis of heating and vaporization of feed droplets in fluidized catalytic cracking risers, Ind. Eng. Chem. Res. 33 (1994) 3104-3111. [42] H. Ali, S. Rohani, Dynamic modeling and simulation of a riser-type fluid catalytic cracking unit, Chem. Eng. Technol. 20 (1997) 118-130. [43] W.E. Ranz, W.R. Marshall, Evaporation from drops-Part I, Chem. Eng. Prog. 48 (1952) 141-146. [44] W.E. Ranz, W.R. Marshall, Evaporation from drops-Part II, Chem. Eng. Prog. 48 (1952) 173-180. [45] CFX_Mgn., CFX-5 solver and solver manager, 1999 5. [46] D.J. Gunn, Transfer of heat ormass to particles in fixed and fluidized beds, Int. J. Heat Mass Transf. 21 (1978) 467-476. [47] Principal of combustion, John Wiley & Sons, Inc., Hoboken, New Jersey, 2005. [48] C. Li, J. Li, Laminar forced convection heat and mass transfer of humid air across a vertical plate with condensation, Chin. J. Chem. Eng. 19 (2011) 944-954. [49] P. Eisenklam, S.A. Arunachlaman, J.A. Weston, Evaporation rates and drag resistances of burning drops, 11th Int. Symp. on Combustion, Pittsburgh 1967, pp. 715-728. [50] J. Garside, M.R. Al-Dibouni, Velocity-voidage relationships for fluidization and sedimentation, Ind. Eng. Chem. Process Des. Dev. 16 (1977) 206-214. [51] Fluent, Modeling multiphase flows, FLUENT 6.3 user's guide., Fluent Inc., Lebanon, 2003. [52] A. Saboni, S. Alexandrova, Numerical study of the drag on a fluid sphere, AIChE J. 48 (2002) 2992-2994. [53] M. Syamlal, T.J. O'Brien, Computer simulation of bubbles in a fluidized bed, AIChE Symp. Ser. 85 (1989) 22-31. [54] A.L. Yarin, Drop impact dynamics, splashing, spreading, receding, bouncing, Annu. Rev. Fluid Mech. 38 (2006) 159-192. [55] V.K. Pareek, A.A. Adesina, A. Srivastava, R. Sharma, Modeling of a non-isothermal FCC riser, Chem. Eng. J. 92 (2003) 101-109. [56] S.V. Nayak, S.L. Joshi, V.V. Ranade,Modeling of vaporization and cracking of liquid oil injected in a gas-solid riser, Chem. Eng. Sci. 60 (2005) 6050-6067. [57] R.S. Miller, K. Harstad, J. Bellan, Evaluation of equilibriumand non-equilibrium evaporation models for many droplet gas liquid flow simulation, Int. J. Multiphase Flow 24 (1998) 1025-1055. [58] S.R. Turns, An introduction to combustion: Concepts and applications, McGraw-Hill, 2000. [59] J. Li, A.H. Lefebvre, J.R. Rollbuhler, Effervescent atomizers for small gas turbines, Am. Soc. Mech. Eng. 94 (1994) 1-6. [60] M.S. El-Shanawany, A.H. Lefebvre, Airblast atomization: The effect of linear scale on mean drop size, J. Energy (1980) 184-189. [61] G.L. Borman, K.W. Ragland, Combustion engineering, McGraw-Hill, 1998. [62] G.E. Lorenzetto, A.H. Lefebvre, Measurements of drop size on a plain-jet airblast atomizer, AIAA J. 15 (1977) 1006-1010. [63] A.K. Jasuja, Atomization of crude and residual fuel oils, J. Eng. Gas Turbines Power 101 (1979) 250-258. [64] M.M. El-kotb, Fuel atomization for spray modeling, Prog. Energy Combust. Sci. 8 (1982) 61-91. [65] V.G. Levich, Physicochemical hydrodynamics, 2nd ed. Prentice-Hall, Englewood Cliffs, NJ, 1962 639-650. [66] DuPont, Thermodynamic properties of DuPont™ Freon®22 (R-22) refrigerant, The miracles of science™ 20112011. [67] S.D. Heister, Plain orifice spray nozzles, Handbook of atomization and sprays., Springer, 2011 625-645. [68] M.R. Spiegel, Mathematical handbook of formulas and tables, Schaum's outline series., McGraw-Hill Inc., New York, 1968. [69] X. Wang, Z. Chao, A. Rajesh, Numerical simulation of evaporating spray jets in concurrent gas-solids pipe flows, Powder Technol. 140 (1) (2004) 56-67. [70] J. Jaccard, R. Turrisi, C.K. Wan, Interaction effects in multiple regression-Quantitative applications in the social sciences, Sage Pub. Inc., Int. Prof. Pub., New Delhi, 1990. [71] J.G. Orme, T.C. Orme, Multiple regression with discrete dependent variables, Oxf. Univ. Press Inc., New York, 2009. [72] H. Yanagii, Multivariate analysis handbook, Gendai Sugakusha, Tokyo, 1986. |