[1] H. Zhang, H. Ye, Y. Zheng, Z. Zhang, Prediction of the viscosity of water confined in carbon nanotubes, Microfluid. Nanofluid. 10(2) (2011) 403-414. [2] P.J. Cadusch, B.D. Todd, J. Zhang, P.J. Daivis, A non-local hydrodynamicmodel for the shear viscosity of confined fluids:analysis of a homogeneous kernel, J. Phys. A Math. Theor. 41(3) (2008) 035501. [3] A. Kumar, A. Henni, E. Shirif, Heavy oil viscosity modeling with friction theory, Energy Fuel 25(2) (2011) 493-498. [4] A. Ponjavic, J. Dench, N. Morgan, J.S.S. Wong, In situ viscosity measurement of confined liquids, RSC Adv. 5(2015) 99585-99593. [5] S.H. Khan, E.L. Kramkowski, P.J. Ochs, D.M. Wilson, P.M. Hoffmann, Viscosity of a nanoconfined liquid during compression, Appl. Phys. Lett. 104(2014) 023110. [6] E. Akhmatskaya, B.D. Todd, P.J. Daivis, D.J. Evans, K.E. Gubbins, L.A. Pozhar, A study of viscosity inhomogeneity in porousmedia, J. Chem. Phys. 106(11) (1997) 4684-4695. [7] J. Zhang, B.D. Todd, K.P. Travis, Viscosity of confined inhomogeneous nonequilibrium fluids, J. Chem. Phys. 121(21) (2004) 10778-10786. [8] D.J. Evans, G.P. Morriss, Statistical mechanics of nonequilibrium liquids, Academic, London, 1990. [9] H. Hoang, G. Galliero, Local viscosity of a fluid confined in a narrow pore, Phys. Rev. E 86(2012) 021202. [10] H.T. Davis, Kinetic theory of inhomogeneous fluid:Tracer diffusion, J. Chem. Phys. 86(3) (1987) 1474-1477. [11] H.T. Davis, Kinetic theory of flow in strongly inhomogeneous fluids, Chem. Eng. Commun. 58(1987) 413-430. [12] L.A. Pozhar, K.E. Gubbins, Transport theory of dense, strongly inhomogeneous fluids, J. Chem. Phys. 99(11) (1993) 8970-8996. [13] I. Bitsanis, J.J. Magda, M. Tirrell, H.T. Davis, Molecular dynamics of flow in micropores, J. Chem. Phys. 87(3) (1987) 1733-1750. [14] S.K. Bhatia, M.R. Bonilla, D. Nicholson, Molecular transport in nanopores:A theoretical perspective, Phys. Chem. Chem. Phys. 13(2011) 15350-15383. [15] Y. Tang, J. Wu, Modeling inhomogeneous van der Waals fluids using an analytical direct correlation function, Phys. Rev. E 70(2004) 011201. [16] D. Zhou, J. Mi, C. Zhong, Three-dimensional density functional study of heterogeneous nucleation of droplets on solid surfaces, J. Phys. Chem. B 116(48) (2012) 14100-14106. [17] Y.-X. Yu, J. Wu, Structures of hard-sphere fluids from a modified fundamentalmeasure theory, J. Chem. Phys. 117(22) (2002) 10156-10164. [18] S.-C. Kim, S.H. Lee, A density functional perturbative approach for simple fluids:The structure of a nonuniform Lennard-Jones fluid at interfaces, J. Phys. Condens. Matter 16(36) (2004) 6365-6374. [19] Y. Tang, Z. Tong, B.C.-Y. Lu, Analytical equation of state based on the Ornstein-Zernike equation, Fluid Phase Equilib. 134(1-2) (1997) 21-42. [20] P.D. Neufeld, A.R. Janzen, R.A. Aziz, Empirical equations to calculate 16 of the transport collision integrals Ω(l,s)* for the Lennard-Jones (12-6) potential, J. Chem. Phys. 57(3) (1972) 1100-1102. [21] G. Galliero, C. Boned, A. Baylaucq,Molecular dynamics study of the Lennard-Jones fluid viscosity:Application to real fluids, Ind. Eng. Chem. Res. 44(17) (2005) 6963-6972. [22] A. Vishnyakov, E.M. Piotrovskaya, E.N. Brodskaya, E.V. Votyakov, Y.K. Tovbin, Critical properties of Lennard-Jones fluids in narrow slit-shaped pores, Langmuir 17(14) (2001) 4451-4458. [23] T.G. Trudeau, K.C. Jena, D.K. Hore,Water structure at solid surfaces of varying hydrophobicity, J. Phys. Chem. C 113(46) (2009) 20002-20008. |