[1] S.U.S. Choi, Enhancing thermal conductivity of fluids with nanoparticles, Developments and applications of non-Newtonian flows, ASME MD 321, FED, Vol. 661995, pp. 99-105. [2] W.A. Khan, I. Pop, Boundary layer flow of a nanofluid past a stretching sheet, Int. J. Heat Mass Transf. 53(2010) 2477-2483. [3] S. Ahmed, I. Pop, Mixed convection boundary layer flow from a vertical plate embedded in a porous medium filled with nanofluids, Int. Commun. Heat Mass Transfer 37(2010) 987-991. [4] M.A.A. Hamad, Analytical solution of natural convection flow of a nanofluid over a linearly stretching sheet in the presence of magnetic field, Int. Commun. Heat Mass Transfer 38(2011) 487-492. [5] R. Sharma, A. Ishak, I. Pop, Partial slip flow and heat transfer over a stretching sheet in a nanofluid, Math. Probl. Eng. 2013(2013) (Article ID 724547, 7 pages). [6] K. Vajravelu, The effect of variable viscosity on the flow and heat transfer of a viscous Ag-water and Cu-water nanofluids, J. Hydrodyn. 25(2013) 1-9. [7] N. Bachok, A. Ishak, R. Nazar, N. Senu, Stagnation-point flow over a permeable stretching/shrinking sheet in a copper-water nanofluid, Bound. Value Probl. 2013(2013) 39. [8] N. Vishnu Ganesh, B. Ganga, A.K. Abdul Hakeem, Lie symmetry group analysis of magnetic field effects on free convective flow of a nanofluid over a semi-infinite stretching sheet, J. Egypt. Math. Soc. 22(2014) 304-310. [9] C. Tangthieng, B.A. Finlayson, J. Maulbetsch, T. Cader, Heat transfer enhancement in ferrofluids subjected to steady magnetic fields, J. Magn. Magn. Mater. 201(1999) 252-255. [10] Q. Li, Y. Xuan, Experimental investigation on heat transfer characteristics of magnetic fluid flow around a fine wire under the influence of an external magnetic field, Exp. Thermal Fluid Sci. 33(2009) 591-596. [11] H. Yamaguchi, Z. Zhang, S. Shuchi, K. Shimada, Heat transfer characteristics of magnetic fluid in a partitioned rectangular box, J. Magn. Magn. Mater. 252(2002) 203-205. [12] A. Abraham, Titus, L.S. Rani, Boundary layer flow of ferrofluid over a stretching sheet in the presence of heat source/sink, Mapana J. Sci. 10(2011) (ISSN 0975-3303). [13] Z.H. Khan, W.A. Khan, M. Qasim, I.A. Shah, MHD stagnation point ferrofluid flow and heat transfer toward a stretching sheet, IEEE Trans. Nanotechnol. 13(2014). [14] M. Sheikholeslami, D.D. Ganji, Ferrohydrodynamic and magnetohydrodynamic effects on ferrofluid flow and convective heat transfer, Energy 75(2014) 400-410. [15] M. Sheikholeslami, M.M. Rashidi, D.D. Ganji, Effect of non-uniform magnetic field on forced convection heat transfer of (Fe3O4)-water nanofluid, Comput. Methods Appl. Mech. Eng. 294(2015) 299-312. [16] H.M.L.C. Navier, Mem. Acad. R. Sci. Int. France 6(1823) 389. [17] J.C. Maxwell, On stresses in rarified gases arising from inequalities of temperature, Phil. Trans. R. Soc. London 170(1879) 231. [18] C.Y. Wang, Flow due to a stretching boundary with partial slip:An exact solution of Navier-Stokes equations, Chem. Eng. Sci. Acta Mech. 57(2002) 3745-3747. [19] P.A. Thompson, S.M. Troian, A general boundary condition for liquid flow at solid surfaces, Nature 389(1997) 360. [20] M.T. Mathews, J.M. Hill, Newtonian flow with nonlinear Navier boundary condition, Acta Mech. 191(2007) 195. [21] C.Y. Wang, Analysis of viscous flow due to a stretching sheet with surface slip and suction, Nonlinear Anal. Real World Appl. 10(2009) 375-380. [22] T. Fang, J. Zhang, S. Yao, Slip MHD viscous flow over a stretching sheet-An exact solution, Commun. Nonlinear Sci. Numer. Simul. 14(2009) 3731-3737. [23] M. Sajid, N. Ali, Z. Abbas, T. Javed, Stretching flows with general slip boundary condition, Int. J. Mod. Phys. B 24(2010) 5939-5947. [24] A. Aziz, Hydrodynamic and thermal slip flow boundary layer over a flat plate with constant heat flux boundary condition, Commun. Nonlinear Sci. Numer. Simul. 15(2010) 573-580. [25] M.M. Rashidi, T. Hayat, E. Erfani, S.A.M. Pour, A.A. Hendi, Simultaneous effects of partial slip and thermal-diffusion and diffusion-thermo on steady MHD convective flow due to a rotating disk, Commun. Nonlinear Sci. Numer. Simul. 16(2011) 4303-4317. [26] W.N. Mutuku-Njane, O.D. Makinde, Combined effect of buoyancy force and Navier slip on MHD flow of a nanofluid over a convectively heated vertical porous plate, Sci. World J. 2013(2013) 725643. [27] S. Mansur, A. Ishak, The magnetohydrodynamic boundary layer flow of a nanofluid past a stretching/shrinking sheet with slip boundary conditions, J. Appl. Math. 2014(2014). [28] Z. Abbas, T. Masood, P.O. Olanrewaju, Dual solutions of MHD stagnation point flow and heat transfer over a stretching/shrinking sheet with generalized slip condition, J. Cent. South Univ. 22(2015) 2376-2384. [29] Z. Abbas, M. Sheikh, I. Pop, Stagnation-point flow of a hydromagnetic viscous fluid over stretching/shrinking sheet with generalized slip condition in the presence of homogeneous-heterogeneous reactions, J. Taiwan Inst. Chem. Eng. 55(2015) 69-75. [30] M.A. Chaudhary, J.H. Merkin, A simple isothermal model for homogeneous-heterogeneous reactions in boundary-layer flow I. Equal diffusivities, Fluid Dyn. Res. 16(1995) 311-333. [31] M.A. Chaudhary, J.H. Merkin, A simple isothermal model for homogeneous-heterogeneous reactions in boundary-layer flow:I. Unequal diffusivities, Fluid Dyn. Res. 16(1995) 333-359. [32] M.A. Chaudhary, J.H. Merkin, Homogeneous-heterogeneous reactions in boundarylayer flow:Effects of loss of reactant, M&l Comput. Model. 24(1996) 21-28. [33] J.H. Merkin, A model for isothermal homogeneous-heterogeneous reactions in boundary-layer flow, Math. Comput. Model. 24(1996) 125-136. [34] W.A. Khan, I. Pop, Flow near the two-dimensional stagnation-point on an infinite permeable wall with a homogeneous-heterogeneous reaction, Commun. Nonlinear Sci. Numer. Simul. 15(2010) 3435-3443. [35] N. Bachok, A. Ishak, I. Pop, On the stagnation-point flow towards a stretching sheet with homogeneous-heterogeneous reactions effect, Commun. Nonlinear Sci. Numer. Simul. 16(2011) 4296-4302. [36] W.A. Khan, I. Pop, Effects of homogeneous-heterogeneous reactions on the viscoelastic fluid toward a stretching sheet, Int. J. Heat Mass Transf. 134(2012), 064506-1. [37] P.K. Kameswaran, S. Shaw, P. Sibanda, P.V.S.N. Murthy, Homogeneous-heterogeneous reactions in a nanofluid flow due to a porous stretching sheet, Int. J. Heat Mass Transf. 57(2013) 465-472. [38] P.K. Kameswaran, P. Sibanda, C. RamReddy, P.V.S.N. Murthy, Dual solutions of stagnation-point flow of a nanofluid over a stretching surface, Bound. Value Probl. 2013(2013) 188. [39] S. Shaw, P.K. Kameswaran, P. Sibanda, Homogeneous-heterogeneous reactions in micropolar fluid flow from a permeable stretching or shrinking sheet in a porous medium, Bound. Value Probl. 2013(2013) 77. [40] T. Hayat, M. Imtiaz, A. Alsaedi, Impact of magnetohydrodynamics in bidirectional flow of nanofluid subject to second order slip velocity and homogeneous-heterogeneous reactions, J. Magn. Magn. Mater. 395(2015) 294-302. [41] H.C. Brinkman, The viscosity of concentrated suspensions and solution, J. Chem. Phys. 20(1952) 571-581. [42] A. Aziz, A similarity solution for laminar thermal boundary layer over a flat plate with a convective surface boundary condition, Commun. Nonlinear Sci. Numer. Simul. 14(2009) 1064-1068. |