[1] D. Figeys, D. Pinto, Lab-on-a chip:A revolution in biological and medical sciences, Anal. Chem. 9(2000) 330A-335A. [2] W. Ehrfeld, V. Hessek, H. Lowe, Microreactors:New Technology for Modern Chemistry, WILEY-VCH, Weinheim, 200033-36. [3] C.T. Hu, K.V. Shaughnessy, R.L. Hartman, Influence of water on the deprotonation and the ionic mechanisms of a Heck alkynylation and its resultant E-factors, React. Chem. Eng. 1(2016) 65-72. [4] C.X. Zhao, A.P.J. Middelberg, Two phase microfluidic flows, Chem. Eng. Sci. 7(2011) 1394-1411. [5] C.T. Hu, A. Yen, N. Joshi, Packed-bed microreactors for understanding of the dissolution kinetics and mechanisms of asphaltenes in xylenes, Chem. Eng. Sci. 140(2016) 144-152. [6] M. Oelgeoeller, Highlights of photochemical reactions in microflow reactors, Chem.Eng. Technol. 35(2012) 1144-1152. [7] M.H. Dang, Y. Jun, G.W. Chen, Numerical simulation of Taylor bubble formation in a micro channel with a converging mixing junction, Chem. Eng. J. 262(2015) 616-627. [8] Y.L. Zhou, H. Chang, T.Y. Qi, Gas-liquid two-phase flow in serpentine microchannel with different wall properties, Chin. J. Chem. Eng. (2016), http://dx.doi.org/10.1016/j.cjche.2016.08.009. [9] P.M. Chung, M. Kawaji, The effect of channel diameter on adiabatic two-phase flow characteristics in microchannels, Int. J. Multiphase Flow 30(2004) 735-761. [10] P.M. Chung, M. Kawaji, A. Kawhara, Y. Shibata, Two-phase flow through square and circular microchanels-effects of channel geometry, J. Fluids Eng. 126(2004) 4575-4585. [11] A. Kawahara, P.M. Chuang, M. Kawaji, Investigation of two-phase flow pattern, void fraction and pressure drop in a micro channel, Int. J. Multiphase Flow 26(2002) 1411-1435. [12] J. Ou, P. Blair, J.P. Rothstein, Laminar drag reduction in micro channels using ultrahydrophobic surfaces, Phys. Fluids 16(2004) 4635-4643. [13] J. Ou, J.P. Rothstein, Direct velocity measurements of the flow past drag reducing ultra-hydrophobic surfaces, Phys. Fluids 17(2005) L1-L10. [14] C.C. Sung, W. Yun, Two-phase flow dynamics in a micro channel with heterogeneous surfaces, Int. J. Heat Mass Transf. 71(2014) 349-360. [15] B.L. Peng, X.H. Ma, Z. Lan, W. Xu, R.F. Wen, Experimental investigation on steam condensation heat transfer enhancement with vertically patterned hydrophobic-hydrophilic hybrid surfaces, Int. J. Heat Mass Transf. 83(2015) 27-38. [16] Y.H. Cai, J. Hu, H.P. Ma, B.L. Yi, H.M. Zhang, Effects of hydrophilic/hydrophobic properties on the water behavior in the micro-channels of a proton exchange membrane fuel cell, J. Power Sources 161(2006) 843-848. [17] S.H. Wong, M.C.L. Ward, C.W. Christopher, Micro T-mixer as a rapid mixing micromixer, Sensors Actuators B Chem. 100(2004) 359-379. [18] M. Song, H.Y. Kim, K. Kim, Effects of hydrophilic/hydrophobic properties of gas flow channels on liquid water transport in a serpentine polymer electrolyte membrane fuel cell, Int. J. Hydrog. Energy 39(2014) 19714-19721. [19] J.M. Park, K.Y. Kwon, Numerical characterization of three-dimensional serpentine micromixers, AIChE J. 54(2008) 1999-2008. [20] M.A. Ansari, K.Y. Kim, Parametric study on mixing of two fluids in a threedimensional serpentine microchannel, Chem. Eng. J. 146(2009) 439-448. [21] M. Wörner, Numerical modeling of multiphase flows in microfluidics and micro process engineering:A review of methods and applications, Microfluid. Nanofluid. 42(2012) 841-886. [22] J.U. Brackbill, D.B. Kothe, C. Zemach, A continuum method for modeling surface tension, J. Comput. Phys. 100(1992) 335-354. [23] P. Sobiseszuk, P. Cyganski, R. Pohorecki, Bubble lengths in the gas-liquid Taylor flow in microchannels, Chem. Eng. Res. Des. 88(2010) 263-269. [24] D. Qian, A. Lawal, Numerical study on gas and liquid slugs for Taylor flow in a T-junction microchannel, Chem. Eng. Sci. 61(2006) 7609-7625. [25] N. Pelevic, T.H. van der meer, Heat transfer and pressure drop in microchannels with random roughness, Int. J. Therm. Sci. 99(2016) 125-135. [26] R.N. Wenzel, Resistance of solid surface to wetting by water, Ind. Eng. Chem. 28(1936) 988. [27] B. Pierre, Flow resistance with boiling refrigerants-Part I, ASHRAE J. 6(1964) 58-65. [28] G. Ning, Z.G. Liu, G.L. Jiang, C.W. Zhang, N. Ding, Experimental and theoretical investigations on the flow resistance reduction and slip flow in superhydrophobic micro tubes, Exp. Thermal Fluid Sci. 69(2015) 45-57. [29] A.B.D. Cassie, Contact angles, Discuss. Faraday Soc. 3(1948) 11-16. [30] G. Hu, G.Y. Hu, C.X. Peng, Effects of roughness on gaseous flow characteristics in microchannels, Ship Elec. Eng. 8(2015) 57-60. |