[1] B.E. Logan, Microbial Fuel Cells, Wiley, Hooken, NJ, 2008. [2] V.B. Oliveirab, M. Simões, L.F. Melo, A.M.F.R. Pinto, Overview on the developments of microbial fuel cells, Biochem. Eng. J. 73(2013) 53-64. [3] B.E. Logan, B. Hamelers, R. Rozendal, U. Schröder, J. Keller, S. Freguia, P. Aelterman, W. Verstraete, K. Rabaey, Microbial fuel cells:Methodology and technology, Environ. Sci. Technol. 40(17) (2006) 5181-5192. [4] B.H. Kim, H.J. KIM, M.S. Hyun, D. Park, Direct electrode reaction of Fe(Ⅲ)-reducing bacterium, Shewanella putrefaciens, J. Microbiol. Biotechnol. 9(2) (1999) 127-131. [5] E. Katz, A.N. Shipway, I. Wilner, in:W. Vielstich, A. Lamm, H.A. Gasteiger (Eds.), Handbook of Fuel Cells:Fundamentals, Technology, Application, Wiley, Chichester, United Kingdom, 2003. [6] X.C. Zhang, A. Halme, Modelling of a microbial fuel cell process, Biotechnol. Lett. 17(2) (1995) 809-814. [7] A.K. Marcus, C.I. Torres, B.E. Rittmann, Conduction-based modeling of the biofilm anode of a microbial fuel cell, Biotechnol. Bioeng. 98(2007) 1171-1182. [8] C. Picioreanu, I.M. Head, K.P. Katuri, M.C.M. van Loosdrecht, K. Scott, A computational model for biofilm-based microbial fuel cells, Water Res. 41(3) (2007) 2921-2940. [9] C. Picioreanu, I.M. Head, K.P. Katuri, M.C.M. van Loosdrecht, K. Scott, Mathematical model for microbial fuel cells with anodic biofilms and anaerobic digestion, Water Sci. Technol. 57(2008) 965-971. [10] C. Picioreanu, K.P. Katuri, M.C.M. van Loosdrecht, I.M. Head, K. Scott, Modelling microbial fuel cells with suspended cells and added electron transfer mediator, J. Appl. Electrochem. 40(2010) 151-162. [11] C. Picioreanu, M.C.M. van Loosdrecht, T.P. Curtis, K. Scott, Model based evaluation of the effect of pH and electrode geometry on microbial fuel cell performance, Bioelectrochemistry 78(1) (2010) 8-24. [12] R.P. Pinto, B. Srinivasan, M.-F. Manuel, B. Tartakovsky, A two-population bioelectrochemical model of a microbial fuel cell, Bioresour. Technol. 101(14) (2010) 5256-5265. [13] Y.Z. Zeng, Y.F. Choo, B.H. Kim, P. Wu, Modelling and simulation of two-chamber microbial fuel cell, J. Power Sources 195(1) (2010) 79-89. [14] L. Woodward, M. Perrier, B. Srinivasan, R.P. Pinto, B. Tartakovsky, Comparison of real-time methods for maximizing power output in microbial fuel cells, AIChE J. 56(10) (2010) 2742-2750. [15] R.P. Pinto, B. Srinivasan, S.R. Guiot, B. Tartakovsky, The effect of real-time external resistance optimization on microbial fuel cell performance, Water Res. 45(4) (2011) 1571-1578. [16] Y.J. He, Z.F. Ma, Robust optimal operation of two-chamber microbial fuel cell system under uncertainty:a stochastic simulation based multi-objective genetic algorithm approach, Fuel Cells 13(3) (2013) 321-335. [17] H.J. Kim, H.S. Park, M.S. Hyun, I.S. Chang, M. Kim, B.H. Kim, A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens, Enzyme Microb. Technol. 30(2) (2002) 145-152. [18] S.K. Chaudhuri, D.R. Lovley, Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells, Nat. Biotechnol. 21(2003) 1229-1232. [19] M. Gen, R. Cheng, Genetic Algorithms and Engineering Optimization, WileyInterscience, Hooken, NJ, USA, 1999. [20] N. Srinivas, K. Deb, Muiltiobjective optimization using nondominated sorting in genetic algorithms, Evol. Comput. 2(3) (1994) 221-248. [21] K. Deb, S. Agrawal, A. Pratap, T. Meyarivan, A fast elitist non-dominated sorting genetic algorithm for multiobjective optimization:NSGA-Ⅱ, Proceedings of the Parallel Problem Solving From Nature VI Conference, Paris, France, 2000. [22] K. Deb, T. Goel, Controlled elitist non-dominated sorting genetic algorithm for better convergence, Proceeding EMO '01 Proceedings of the First International Conference on Evolutionary Multi-criterion Optimization, Springer-Verlag, London, United Kingdom, 2001. [23] X. Blasco, J.M. Herrero, J. Sanchis, M. Martínez, A new graphical visualization of ndimensional Pareto front for decision-making in multiobjective optimization, Inf. Sci. 178(20) (2008) 3908-3924. |