[1] R. Baby, C. Balaji, Experimental investigations on phase change material based finned heat sinks for electronic equipment cooling, Int. J. Heat Mass Transf. 55(2012) 1642-1649. [2] R. Baby, C. Balaji, Thermal optimization of PCM based pin fin heat sinks:An experimental study, Appl. Therm. Eng. 54(2013) 65-77. [3] N. Gnanasekaran, C. Balaji, Markov Chain Monte Carlo (MCMC) approach for the determination of thermal diffusivity using transient fin heat transfer experiments, Int. J. Therm. Sci. 63(2013) 46-54. [4] M. Sasikumar, C. Balaji, Optimization of convective fin systems:A holistic approach, Heat Mass Transf. 39(2002) 57-68. [5] M. Sasikumar, C. Balaji, A holistic optimization of convecting-radiating fin systems, J. Heat Transf. 124(2002) 1110-1116. [6] B. Kundu, D. Barman, An analytical prediction for performance and optimization of an annular fin assembly of trapezoidal profile under dehumidifying conditions, Energy 36(5) (2011) 2572-2588. [7] M.H. Sharqawy, S.M. Zubair, Efficiency and optimization of an annular fin with combined heat and mass transfer-An analytical solution, Int. J. Refrig. 30(2007) 751-757. [8] M.H. Sharqawy, S.M. Zubair, Efficiency and optimization of straight fins with combined heat and mass transfer-An analytical solution, Appl. Therm. Eng. 28(2008) 2279-2288. [9] B. Kundu, K.S. Lee, Analytic solution for heat transfer of wet fins on account of all nonlinearity effects, Energy 41(2012) 354-367. [10] B. Kundu, A new methodology for determination of an optimum fin shape under dehumidifying conditions, Int. J. Refrig. 33(2010) 1105-1117. [11] B. Kundu, Approximate analytic solution for performances of wet fins with a polynomial relationship between humidity ratio and temperature, Int. J. Therm. Sci. 48(2009) 2108-2118. [12] B. Kundu, A. Miyara, An analytical method for determination of the performance of a fin assembly under dehumidifying conditions:A comparative study, Int. J. Refrig. 32(2009) 369-380. [13] B. Kundu, K.S. Lee, A novel analysis for calculating the smallest envelope shape of wet fins with a nonlinear mode of surface transport, Energy 44(2012) 527-543. [14] S. Sabbaghi, A. Rezaii, Gh.R. Shahri, M.S. Baktash, Mathematical analysis for the efficiency of a semi-spherical fin with simultaneous heat and mass transfer, Int. J. Refrig. 34(2011) 1877-1882. [15] X. Xu, L. Xia, M. Chan, S. Deng, A Modified McQuiston model for evaluating efficiency of wet fin considering effect of condensate film moving on fin surface, Energy Convers. Manag. 49(2008) 2403-2408. [16] S. Kiwan, Thermal analysis of natural convection porous fins, Transp. Porous Media 67(2007) 17-29. [17] S. Kiwan, M.A. Al-Nimr, Using porous fins for heat transfer enhancement, J. Heat Transf. 123(2001) 790-795. [18] B. Kundu, D. Bhanja, An analytical prediction for performance and optimum design analysis of porous fins, Int. J. Refrig. 34(2011) 337-352. [19] M. Hatami, D.D. Ganji, Thermal performance of circular convective-radiative porous fins with different section shapes and materials, Energy Convers. Manag. 76(2013) 185-193. [20] M. Hatami, A. Hasanpour, D.D. Ganji, Heat transfer study through porous fins (Si3N4 and AL) with temperature-dependent heat generation, Energy Convers. Manag. 74(2013) 9-16. [21] D. Bhanja, B. Kundu, P.K. Mandal, Thermal analysis of porous pin fin used for electronic cooling, Process. Eng. 64(2013) 956-965. [22] B. Kundu, D. Bhanja, K.S. Lee, A model on the basis of analytics for computing maximum heat transfer in porous fins, Int. J. Heat Mass Transf. 55(2012) 7611-7622. [23] R. Das, K.T. Ooi, Predicting multiple combination of parameters for designing a porous fin subjected to a given temperature requirement, Energy Convers. Manag. 66(2013) 211-219. [24] S. Saedodin, M. Olank, Temperature distribution in porous fins in natural convection condition, J. Am. Sci. 7(6) (2011) 476-481. [25] S.Y. Kim, J.W. Paek, B.H. Kang, Flow and heat transfer correlations for porous fin in a plate-fin heat exchanger, J. Heat Transf. 122(2000) 572-578. [26] M. Turkyilmazoglu, Efficiency of heat and mass transfer in fully wet porous fins:Exponential fins versus straight fins, Int. J. Refrig. 46(2014) 158-164. [27] M. Hatami, D.D. Ganji, Investigation of refrigeration efficiency for fully wet circular porous fins with variable sections by combined heat and mass transfer analysis, Int. J. Refrig. 40(2014) 140-151. [28] M. Hatami, G.H.R. Mehdizadeh Ahangar, D.D. Ganji, K. Boubaker, Refrigeration efficiency analysis fully wet semi-spherical porous fins, Energy Convers. Manag. 84(2014) 533-540. [29] A. Vahabzadeh, D.D. Ganji, M. Abbasi, Analytical investigation of porous pin fins with variable section in fully-wet conditions, Case Stud. Therm. Eng. 5(2015) 1-12. [30] A. Bejan, Constructal theory network of conducting paths for cooling a heat generating volume, Int. J. Heat Mass Transf. 40(1997) 799-816. [31] A. Bejan, M. Almogbel, Constructal T-shaped fins, Int. J. Heat Mass Transf. 43(2000) 2101-2115. [32] G. Lorenzini, M. Medici, L.A.O. Rocha, Convective analysis of constructal T-shaped fins, J. Eng. Thermophys. 23(2014) 98-104. [33] S.A. Hazarika, D. Bhanja, S. Nath, B. Kundu, Analytical solution to predict performance and optimum design parameters of a constructal T-shaped fin with simultaneous heat and mass transfer, Energy 84(2015) 303-316. [34] B. Kundu, D. Bhanja, Performance and optimization analysis of a constructal T-shaped fin subject to variable thermal conductivity and convective heat transfer co-efficient, Int. J. Heat Mass Transf. 53(2010) 254-267. [35] D. Bhanja, B. Kundu, Thermal analysis of a constructal T-shaped porous fin with radiation effects, Int. J. Refrig. 34(2011) 1483-1496. [36] L.G. Chen, Progress in study on constructal theory and its applications, Sci. China Technol. Sci. 55(3) (2012) 802-820. [37] L.G. Chen, H.J. Feng, Multi-objective Constructal Optimizations for Fluid Flow. Heat Mass Transfer Processes, Science Press, Beijing (in Chinese), 2016. [38] H.J. Feng, L.G. Chen, F.R. Sun, "Volume-point" heat conduction constructal optimization based on entransy dissipation rate minimization with three-dimensional cylindrical element and rectangular and triangular elements at micro and nanoscales, Sci. China Technol. Sci. 55(3) (2012) 779-794. [39] L.G. Chen, H.J. Feng, Z.H. Xie, F.R. Sun, Constructal optimization for "disc-point" heat conduction at micro and nanoscales, Int. J. Heat Mass Transf. 67(2013) 704-711. [40] H.J. Feng, L.G. Chen, Z.H. Xie, F.R. Sun, Constructal entransy optimizations for insulation layer of steel rolling reheating furnace wall with convective and radiative boundary conditions, Chin. Sci. Bull. 59(20) (2014) 2470-2477. [41] H.J. Feng, L.G. Chen, Z.H. Xie, F.R. Sun, Constructal design for "+" shaped high conductive pathways over a square body, Int. J. Heat Mass Transf. 91(2015) 62-69. [42] L.G. Chen, H.J. Feng, Z.H. Xie, F.R. Sun, Constructal optimization for leaf-like body based on maximization of heat transfer rate, Int. Commun. Heat Mass Transfer 71(2016) 157-163. [43] S.W. Gong, L.G. Chen, Z.H. Xie, H.J. Feng, F.R. Sun, Constructal optimization of cylindrical heat sources with forced convection based on entransy dissipation minimization, Sci. China Technol. Sci. 59(4) (2016) 631-639. [44] H.J. Feng, L.G. Chen, Z.H. Xie, F.R. Sun, Constructal entransy dissipation rate minimization for helm-shaped fin with inner heat sources, Sci. China Technol. Sci. 58(6) (2015) 1084-1090. [45] S.W. Gong, L.G. Chen, H.J. Feng, Z.H. Xie, F.R. Sun, Constructal optimization of cylindrical heat sources surrounded with a fin based on minimization of hot spot temperature, Int. Commun. Heat Mass Transfer 68(2015) 1-7. [46] L.G. Chen, Q.H. Xiao, Z.H. Xie, F.R. Sun, Constructal entransy dissipation rate minimization for tree-shaped assembly of fins, Int. J. Heat Mass Transf. 67(2013) 506-513. [47] L.G. Chen, Q.H. Xiao, Z.H. Xie, F.R. Sun, T-shaped assembly of fins with constructal entransy dissipation rate minimization, Int. Commun. Heat Mass Transfer 39(10) (2012) 1556-1562. [48] H.J. Feng, L.G. Chen, F.R. Sun, Constructal entransy dissipation rate minimization for leaf-like fins, Sci. China Technol. Sci. 55(2) (2012) 515-526. [49] Z.H. Xie, L.G. Chen, F.R. Sun, Constructal optimization of twice level Y-shaped assemblies of fins by taking maximum thermal resistance minimization as objective, Sci. China Technol. Sci. 53(10) (2010) 2756-2764. [50] M. Turkyilmazoglu, Nonlinear heat transfer in rectangular fins and exact solutions with temperature dependent properties, J. Therm. Sci. Technol. 35(2015) 29-35. [51] M. Turkyilmazoglu, Exact heat-transfer solutions to radial fins of general profile, J. Thermophys. Heat Transf. 30(2016) 89-93. [52] M. Turkyilmazoglu, Exact solutions to heat transfer in straight fins of varying exponential shape having temperature dependent properties, Int. J. Therm. Sci. 55(2012) 69-75. [53] T.H. Chilton, A.P. Colburn, Mass transfer (absorption) coefficients, Ind. Eng. Chem. 26(1934) 1183-1187. [54] J.K. Zhou, Differential Transform and Its Applications for Electrical Circuits, Huarjung University Press, Wuuhahn, China (in Chinese), 1986. [55] J.H. Lienhard IV, Lienhard VJH, A Heat Transfer Textbook, Phlogiston Press, Cambridge, Massachusetts, 2008. |