[1] G. Chen, J. Yue, Q. Yuan, Gas-liquid microreaction technology:Recent developments and future challenges, Chin. J. Chem. Eng. 16(5) (2008) 663-669. [2] C.W. Choi, D.I. Yu, M.H. Kim, Adiabatic two-phase flow in rectangular microchannels with different aspect ratios:Part I-Flow pattern, pressure drop and void fraction, Int. J. Heat Mass Transf. 54(1-3) (2011) 616-624. [3] H. Ganapathy, E. Al-Hajri, M. Ohadi, Mass transfer characteristics of gas-liquid absorption during Taylor flow in mini/microchannel reactors, Chem. Eng. Sci. 101(2013) 69-80. [4] K. Yamamoto, S. Ogata, Effects of T-junction size on bubble generation and flow instability for two-phase flows in circular microchannels, Int. J. Multiphase Flow 49(2013) 24-30. [5] A. Özkan, E. Yegân Erdem, Numerical analysis of mixing performance in sinusoidal microchannels based on particle motion in droplets, Microfluid. Nanofluid. 19(2015) 1101-1108. [6] Z. Zhang, Z. Qian, L. Xu, C. Wu, K. Guo, Deviation of carbon dioxide-water gas-liquid balance from thermodynamic equilibrium in turbulence I:Experiment and correlation, Chin. J. Chem. Eng. 21(7) (2013) 770-775. [7] F. Yang, S. Zhou, X. An, Gas-liquid hydrodynamics in a vessel stirred by dual dislocated-blade Rushton impellers, Chin. J. Chem. Eng. 23(11) (2015) 1746-1754. [8] W. Li, X. Geng, Y. Bao, Z. Gao, Micromixing characteristics in a gas-liquid-solid stirred tank with settling particles, Chin. J. Chem. Eng. 23(3) (2015) 461-470. [9] Z. Jia, Q. Chang, J. Qin, A. Mamat, Preparation of calcium carbonate nanoparticles with a continuous gas-liquid membrane contactor:Particles morphology and membrane fouling, Chin. J. Chem. Eng. 21(2) (2013) 121-126. [10] E. Santacesaria, M. Di Serio, P. Iengo, Mass transfer and kinetics in ethoxylation spray tower loop reactors, Chem. Eng. Sci. 54(10) (1999) 1499-1504. [11] J.A. Delgado, M.A. Uguina, J.L. Sotelo, V.I. Águeda, A. Sanz, Simulation of CO2 absorption into aqueous DEA using a hollow fiber membrane contactor:Evaluation of contactor performance, Chem. Eng. J. 152(2-3) (2009) 396-405. [12] S. Krumdieck, J. Wallace, O. Curnow, Compact, low energy CO2 management using amine solution in a packed bubble column, Chem. Eng. J. 135(1-2) (2008) 3-9. [13] C.P. Stemmet, M. Meeuwse, J. van der Schaaf, B.F.M. Kuster, J.C. Schouten, Gas-liquid mass transfer and axial dispersion in solid foam packings, Chem. Eng. Sci. 62(18-20) (2007) 5444-5450. [14] F. Yi, H.-K. Zou, G.-W. Chu, L. Shao, J.-F. Chen, Modeling and experimental studies on absorption of CO2 by Benfield solution in rotating packed bed, Chem. Eng. J. 145(3) (2009) 377-384. [15] H. Niu, L. Pan, H. Su, S. Wang, Flow pattern, pressure drop, and mass transfer in a gas-liquid concurrent two-phase flow microchannel reactor, Ind. Eng. Chem. Res. 48(2009) 1621-1628. [16] T.Y. Chan, G.H. Priestman, J.M. MacInnes, R.W.K. Allen, Development of a microchannel contactor-separator for immiscible liquids, Chem. Eng. Res. Des. 86(1) (2008) 65-74. [17] R. Luo, L. Wang, Liquid flow pattern around Taylor bubbles in an etched rectangular microchannel, Chem. Eng. Res. Des. 90(8) (2012) 998-1010. [18] M. Heuberger, L. Gottardo, M. Dressler, R. Hufenus, Biphasic fluid oscillator with coaxial injection and upstream mass and momentum transfer, Microfluid. Nanofluid. 19(3) (2015) 653-663. [19] W. Ehrfeld, V. Hessel, H. Lowe, Microreactors New Technology for Modern Chemistry, Wiley-VCH, Weinheim, 2000. [20] X. Wang, G. Liu, K. Wang, G. Luo, Measurement of internal flow field during droplet formation process accompanied with mass transfer, Microfluid. Nanofluid. 19(3) (2015) 757-766. [21] M. Rahimi, M. Akbari, M.A. Parsamoghadam, A.A. Alsairafi, CFD study on effect of channel confluence angle on fluid flow pattern in asymmetrical shaped microchannels, Comput. Chem. Eng. 73(2015) 172-182. [22] A. Schuster, K. Sefiane, J. Ponton, Multiphase mass transport in mini/micro-channels microreactor, Chem. Eng. Res. Des. 86(5) (2008) 527-534. [23] B. Xu, W. Cai, X. Liu, X. Zhang, Mass transfer behavior of liquid-liquid slug flow in circular cross-section microchannel, Chem. Eng. Res. Des. 91(7) (2013) 1203-1211. [24] Y. Zhao, G. Chen, Q. Yuan, Liquid-liquid two-phase flow patterns in a rectangular microchannel, AIChE J. 52(12) (2006) 4052-4060. [25] S. Ferrouillat, P. Tochon, H. Peerhossaini, Micromixing enhancement by turbulence:Application to multifunctional heat exchangers, Chem. Eng. Process. 45(8) (2006) 633-640. [26] M. Kashid, A. Renken, L. Kiwi-Minsker, Mixing efficiency and energy consumption for five generic microchannel designs, Chem. Eng. J. 167(2-3) (2011) 436-443. [27] M. Darekar, K.K. Singh, S. Mukhopadhyay, K.T. Shenoy, S.K. Ghosh, Solvent extraction in microbore tubes with UNPS-TBP in dodecane system, Sep. Purif. Technol. 128(2014) 96-105. [28] U. Novak, A. Pohar, I. Plazl, P. Žnidaršič-Plazl, Ionic liquid-based aqueous twophase extraction within a microchannel system, Sep. Purif. Technol. 97(2012) 172-178. [29] H. Su, S. Wang, H. Niu, L. Pan, A. Wang, Y. Hu, Mass transfer characteristics of H2S absorption from gaseous mixture into methyldiethanolamine solution in a Tjunction microchannel, Sep. Purif. Technol. 72(3) (2010) 326-334. [30] C. Ye, G. Chen, Q. Yuan, Process characteristics of CO2 absorption by aqueous Monoethanolamine in a microchannel reactor, Chin. J. Chem. Eng. 20(1) (2012) 111-119. [31] B. Agostini, J.R. Thome, M. Fabbri, B. Michel, D. Calmi, U. Kloter, High heat flux flow boiling in silicon multi-microchannels-Part I:Heat transfer characteristics of refrigerant R236fa, Int. J. Heat Mass Transf. 51(21-22) (2008) 5400-5414. [32] T. Harirchian, S.V. Garimella, A comprehensive flow regime map for microchannel flow boiling with quantitative transition criteria, Int. J. Heat Mass Transf. 53(13-14) (2010) 2694-2702. [33] W. Li, Z. Wu, A general correlation for adiabatic two-phase pressure drop in micro/mini-channels, Int. J. Heat Mass Transf. 53(13-14) (2010) 2732-2739. [34] S.-S. Hsieh, C.-Y. Lin, Correlation of critical heat flux and two-phase friction factor for subcooled convective boiling in structured surface microchannels, Int. J. Heat Mass Transf. 55(1-3) (2012) 32-42. [35] T. Harirchian, S.V. Garimella, Flow regime-based modeling of heat transfer and pressure drop in microchannel flow boiling, Int. J. Heat Mass Transf. 55(4) (2012) 1246-1260. [36] E. Jafarifar, M. Hajialyani, M. Akbari, M. Rahimi, Y. Shokoohinia, A. Fattahi, Preparation of a reproducible long-acting formulation of risperidone-loaded PLGA microspheres using microfluidic method, Pharm. Dev. Technol. (2016) 1-8. [37] V.M. Rajesh, V.V. Buwa, Experimental characterization of gas-liquid-liquid flows in T-junction microchannels, Chem. Eng. J. 207-208(2012) 832-844. [38] J. Yue, G. Chen, Q. Yuan, L. Luo, Y. Gonthier, Hydrodynamics and mass transfer characteristics in gas-liquid flow through a rectangular microchannel, Chem. Eng. Sci. 62(7) (2007) 2096-2108. [39] J. Yue, L. Luo, Y. Gonthier, G. Chen, Q. Yuan, An experimental investigation of gas-liquid two-phase flow in single microchannel contactors, Chem. Eng. Sci. 63(16) (2008) 4189-4202. [40] J. Yue, L. Luo, Y. Gonthier, G. Chen, Q. Yuan, An experimental study of air-water Taylor flow and mass transfer inside square microchannels, Chem. Eng. Sci. 64(16) (2009) 3697-3708. [41] V. Hessel, W. Ehrfeld, T. Herweck, V. Haverkamp, H. Lowe, J. Schiewe, C. Wille, T. Kern, N. Lutz, Gas/liquid microreactors:Hydrodynamics and mass transfer, 4th International Conference on Microreaction Technology, IMRET 4, Atlanta, USA 2000, pp. 174-186. [42] M. Rahimi, N. Azimi, F. Parvizian, Using microparticles to enhance micromixing in a high frequency continuous flow sonoreactor, Chem. Eng. Process. 70(2013) 250-258. [43] Z. Yang, S. Matsumoto, H. Goto, M. Matsumoto, R. Maeda, Ultrasonic micromixer for micro fluidic systems, Sens. Actuators A 9(2001) 266-272. [44] Z. Dong, C. Yao, Y. Zhang, G. Chen, Q. Yuan, J. Xu, Hydrodynamics and mass transfer of oscillating gas-liquid flow in ultrasonic microreactors, AIChE J. 62(4) (2016) 1294-1307. [45] Z. Dong, S. Zhao, Y. Zhang, C. Yao, Q. Yuan, G. Chen, Mixing and residence time distribution in ultrasonic microreactors, AIChE J. 63(2017) 1404-1418. [46] Z. Dong, C. Yao, X. Zhang, J. Xu, G. Chen, Y. Zhao, Q. Yuan, A high-power ultrasonic microreactor and its application in gas-liquid mass transfer intensification, Lab Chip 15(4) (2015) 1145-1152. [47] M. Rahimi, B. Aghel, B. Hatamifar, M. Akbari, A. Alsairafi, CFD modeling of mixing intensification assisted with ultrasound wave in a T-type microreactor, Chem. Eng. Process. 86(2014) 36-46. [48] M. Rahimi, S. Safari, M. Faryadi, N. Moradi, Experimental investigation on proper use of dual high-low frequency ultrasound waves-Advantage and disadvantage, Chem. Eng. Process. 78(2014) 17-26. [49] M. Faryadi, M. Rahimi, S. Safari, N. Moradi, Effect of high frequency ultrasound on micromixing efficiency in microchannels, Chem. Eng. Process. 77(2014) 13-21. [50] S. Aljbour, T. Tagawa, H. Yamada, Ultrasound-assisted capillary microreactor for aqueous-organic multiphase reactions, J. Ind. Eng. Chem. 15(6) (2009) 829-834. [51] A. Brotchie, F. Grieser, M. Ashokkumar, Effect of power and frequency on bubblesize distributions in acoustic cavitation, Phys. Rev. Lett. 102(8) (2009) 084302. [52] M.D. Luque de Castro, F. Priego-Capote, Ultrasound assistance to liquid-liquid extraction:A debatable analytical tool, Anal. Chim. Acta 583(1) (2007) 2-9. [53] K.A. Triplett, S.M. Ghiaasiaan, S.I. Abdel-Khalik, D.L. Sadowski, Gas-liquid two-phase flow in microchannels part I:Two-phase flow patterns, Int. J. Multiphase Flow 25(1999) 377-394. [54] M. Rahimi, M. Dehbani, M. Abolhasani, Experimental study on the effects of acoustic streaming of high frequency ultrasonic waves on convective heat transfer:Effects of transducer position and wave interference, Int. Commun. Heat Mass Transfer 39(5) (2012) 720-725. [55] P.R. Gogate, I.Z. Shirgaonkar, M. Sivakumar, P. Senthilkumar, N.P. Vichare, A.B. Pandit, Cavitation reactors:Efficiency assessment using a model reaction, AIChE J. 47(2001) 2526-2538. [56] M. Zanfir, A. Gavriilidis, C. Wille, V. Hessel, Carbon dioxide absorption in a falling film microstructured reactor:Experiments and modeling, Ind. Eng. Chem. Res. 44(2005) 1742-1751. [57] A. Schumpe, The estimation of gas solubilities in salt solutions, Chem. Eng. Sci. 48(1993) 153-158. [58] P.V. Danckwerts, Gas-Liquid Reactions, McGraw-Hill, New York, USA, 1970. [59] D. Roberts, P.V. Danckwerts, Kinetics of CO2 absorption in alkaline solutions-I. Transient absorption rates and catalysis by arsenite, Chem. Eng. Sci. 17(1962) 961-969. [60] H. Hikita, S. Asai, H. Ishikawa, M. Seko, H. Kitajima, Diffusivities of carbon dioxide in aqueous mixed electrolyte solutions, Chem. Eng. J. 17(1979) 77-80. [61] R. Pohorecki, W. Moniuk, Kinetics of reaction between carbon dioxide and hydroxylions in aqueous electrolyte solutions, Chem. Eng. Sci. 43(1988) I677-1684. [62] M.M. Sharma, P.V. Danckwerts, Chemical methods of measuring interfacial areas and mass transfer coefficients in two fluid systems, Braz. J. Chem. Eng. 15(1970) 522-528. [63] J.F. Chen, G.Z. Chen, J.X. Wang, L. Shao, P.F. Li, High-throughput microporous tubein-tube microreactor as novel gas-liquid contactor:Mass transfer study, AIChE J. 57(1) (2011) 239-249. |