[1] D. Randall, S. Lee, The Huntsman Polyurethanes Book,Wiley, United Kingdom, 2002.[2] W.D. Vilar, Chemistry and Technology of Polyurethanes, Third updated ed. Vilar Consultoria Técnica Ltda., Rio de Janeiro, Brazil, 2002.[3] J.S. Nowick, D.L. Holmes, G. Noronha, E.M. Smith, T.M. Nguyen, S.L. Huang, Synthesis of peptide isocyanates and isothiocyanates, J. Org. Chem. 61 (11) (1996) 3929-3934.[4] E. Delebecq, J.P. Pascault, B. Boutevin, F. Ganachaud, On the versatility of urethane/ urea bonds: Reversibility, blocked isocyanate, and non-isocyanate polyurethane, Chem. Rev. 113 (1) (2012) 80-118.[5] P. Dubé, N.F.F. Nathel, M. Vetelino, M. Couturier, C.L. Aboussafy, S. Pichette, M.L. Jorgensen, M. Hardink, Carbonyldiimidazole-mediated Lossen rearrangement, Org. Lett. 11 (24) (2009) 5622-5625.[6] V.V. Sureshbabu, B.S. Patil, R. Venkataramanarao, Preparation, isolation, and characterization of N α-Fmoc-peptide isocyanates: Solution synthesis of oligo-α-peptidyl ureas, J. Org. Chem. 71 (20) (2006) 7697-7705.[7] B. Akhlaghinia, A new and convenient method of generating alkyl isocyanates from alcohols, thiols and trimethylsilyl ethers using triphenylphosphine/2,3-dichloro- 5,6-dicyanobenzoquinone/Bu4NOCN, Synthesis (12) (2005) 1955-1958.[8] W.H. Lin, Y.S. Guo, S.A. Dai, An efficient one-pot synthesis of aliphatic diisocyanate from diamine and aiphenyl carbonate, J. Taiwan Inst. Chem. Eng. 50 (2015) 322-327.[9] G. Zhu, H. Li, Y. Cao, H. Liu, X. Li, J. Chen, Q. Tang, Kinetic study on the novel efficient clean decomposition of methyl n-phenyl carbamate to phenyl isocyanate, Ind. Eng. Chem. Res. 52 (12) (2013) 4450-4454.[10] Y. Cao, H. Li, N. Qin, G. Zhu, Kinetics of the decomposition of dimethylhexane-1, 6- dicarbamate to 1, 6-hexamethylene diisocyanate, Chin. J. Chem. Eng. 23 (5) (2015) 775-779.[11] T. Masuda, D. Saylik, L. Diebele, Production of Aliphatic Isocyanate, Japan Pat., 6239826, 1994.[12] J.Wildschut, F.H. Mahfud, R.H. Venderbosch, H.J. Heeres, Hydrotreatment of fast pyrolysis oil using heterogeneous noble-metal catalysts, Ind. Eng. Chem. Res. 48 (23) (2009) 10324-10334.[13] S.C. Miranda, C.C. Cabrero, E.F. Gutierrez, P.S. Carnero, M.S. Queralt, P.U. Sola, Isocyanate Production Procedure, US Pat., 6639101, 2003.[14] D.L. Sun, J.Y. Luo, R.Y. Wen, J.R. Deng, Z.S. Chao, Phosgene-free synthesis of hexamethylene-1,6-diisocyanate by the catalytic decomposition of dimethylhexane- 1, 6-dicarbamate over zinc-incorporated berlinite (ZnAlPO4), J. Hazard. Mater. 266 (2014) 167-173.[15] M.J. Hyun, M. Shin, Y.J. Kim, Y.W. Suh, Phosgene-free decomposition of dimethylhexane-1,6-dicarbamate over ZnO, Res. Chem. Intermed. (2015) 1-14.[16] A.Y. Khodakov,W. Chu, P. Fongarland, Advances in the development of novel cobalt Fischer-Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels, Chem. Rev. 107 (5) (2007) 1692-1744.[17] Y. Li, S. Liu, S. Xie, L. Xu, Promotedmetal utilization capacity of alkali-treated zeolite: Preparation of Zn/ZSM-5 and its application in 1-hexene aromatization, Appl. Catal. A Gen. 360 (1) (2009) 8-16.[18] A. Szegedi, M. Popova, C. Minchev, Catalytic activity of Co/MCM-41 and Co/SBA-15 materials in toluene oxidation, J. Mater. Sci. 44 (24) (2009) 6710-6716.[19] T. Kanazawa, MFI zeolite as a support for automotive catalysts with reduced Pt sintering, Appl. Catal. B Environ. 65 (3) (2006) 185-190.[20] L.B. Pierella, C. Saux, S.C. Caglieri, H.R. Bertorello, P.G. Bercoff, Catalytic activity and magnetic properties of Co-ZSM-5 zeolites prepared by different methods, Appl. Catal. A Gen. 347 (1) (2008) 55-61.[21] S.H. Kang, J.H. Ryu, J.H. Kim, P.S. Prasad, J.W. Bae, J.Y. Cheon, K.W. Jun, ZSM-5 supported cobalt catalyst for the direct production of gasoline range hydrocarbons by Fischer-Tropsch synthesis, Catal. Lett. 141 (10) (2011) 1464-1471.[22] A. Gervasini, Characterization of the textural properties of metal loaded ZSM-5 zeolites, Appl. Catal. A Gen. 180 (1) (1999) 71-82.[23] Z.M. El-Bahy, M.M. Mohamed, F.I. Zidan, M.S. Thabet, Photo-degradation of acid green dye over Co-ZSM-5 catalysts prepared by incipient wetness impregnation technique, J. Hazard. Mater. 153 (1) (2008) 364-371.[24] M. Yao, N. Yao, Y. Shao, Q. Han, C.Ma, C. Yuan, C. Li, X. Li, New insight into the activity of ZSM-5 supported Co and CoRu bifunctional Fischer-Tropsch synthesis catalyst, Chem. Eng. J. 239 (2014) 408-415.[25] L.F. Chen, P.J. Guo, M.H. Qiao, S.R. Yan, H.X. Li, W. Shen, H.L. Xu, K.N. Fan, Cu/SiO2 catalysts prepared by the ammonia-evaporation method: Texture, structure, and catalytic performance in hydrogenation of dimethyl oxalate to ethylene glycol, J. Catal. 257 (1) (2008) 172-180.[26] Z. Zhu, G. Lu, Z. Zhang, Y. Guo, Y. Guo, Y.Wang, Highly active and stable Co3O4/ZSM- 5 catalyst for propane oxidation: Effect of the preparation method, ACS Catal. 3 (6) (2013) 1154-1164.[27] X. Huang, B. Hou, J.Wang, D. Li, L. Jia, J. Chen, Y. Sun, CoZr/H-ZSM-5 hybrid catalysts for synthesis of gasoline-range isoparaffins from syngas, Appl. Catal. A Gen. 408 (1) (2011) 38-46.[28] L.F. Isernia, FTIR study of the relation, between extra-framework aluminum species and the adsorbed molecular water, and its effect on the acidity in ZSM-5 steamed zeolite, Mater. Res. 16 (4) (2013) 792-802.[29] X. Zhao, L. Wei, J. Julson, Q. Qiao, A. Dubey, G. Anderson, Catalytic cracking of nonedible sunflower oil over ZSM-5 for hydrocarbon bio-jet fuel, New Biotechnol. 32 (2) (2015) 300-312.[30] X. Zhao, L.Wei, J. Julson, Z. Gu, Y. Cao, Catalytic cracking of inedible camelina oils to hydrocarbon fuels over bifunctional Zn/ZSM-5 catalysts, Korean J. Chem. Eng. 32 (8) (2015) 1528-1541.[31] S.H. Zhang, Z.X. Gao, S.J. Qing, S.Y. Liu, Y. Qiao, Effect of zinc introduction on catalytic performance of ZSM-5 in conversion of methanol to light olefins, Chem. Pap. 68 (9) (2014) 1187-1193.[32] N.A.S. Amin, D.D. Anggoro, Characterization and activity of Cr, Cu and Ga modified ZSM-5 for direct conversion of methane to liquid hydrocarbons, J. Nat. Gas Chem. 12 (2) (2003) 123-134.[33] C.W. Tang, C.B.Wang, S.H. Chien, Characterization of cobalt oxides studied by FT-IR, Raman, TPR and TG-MS, Thermochim. Acta 473 (1) (2008) 68-73.[34] J. Cheng, J. Yu, X. Wang, L. Li, J. Li, Z. Hao, Novel CH4 combustion catalysts derived from Cu-Co/X-Al (X = Fe, Mn, La, Ce) hydrotalcite-like compounds, Energy Fuel 22 (4) (2008) 2131-2137.[35] J.Y. Luo, M. Meng, X. Li, X.G. Li, Y.Q. Zha, T.D. Hu, Y.N. Xie, J. Zhang, Mesoporous Co3O4-CeO2 and Pd/Co3O4-CeO2 catalysts: Synthesis, characterization and mechanistic study of their catalytic properties for low-temperature CO oxidation, J. Catal. 254 (2) (2008) 310-324.[36] C. Chupin, A. Van Veen,M. Konduru, J. Després, C.Mirodatos, Identity and location of active species for NO reduction by CH4 over Co-ZSM-5, J. Catal. 241 (1) (2006) 103-114.[37] Q. Liu, L.C. Wang, M. Chen, Y. Cao, H.Y. He, K.N. Fan, Dry citrate-precursor synthesized nanocrystalline cobalt oxide as highly active catalyst for total oxidation of propane, J. Catal. 263 (1) (2009) 104-113. |