[1] H.A. Janssen, Versuche über getreidedruck in silozellen, Z. Ver. Dtsch. Ing. 39(35) (1895) 1045.[2] S. Jing, H.Z. Li, Study on the flow of fine powders from hoppers connected to a moving-bed standpipe with negative pressure gradient, Powder Technol. 101(3) (1999) 266-278.[3] A.W. Roberts, Review of mass flow hopper design with respect to stress fields and surcharge loads, Particuology 8(6) (2010) 591-594.[4] B.S. Jin, H. Tao, W.Q. Zhou, Flow behavior of non-spherical granules in rectangular hopper, Chin. J. Chem. Eng. 18(6) (2010) 931-939.[5] S. Albaraki, S.J. Antony, How does internal angle of hoppers affect granular flow:experimental studies using digital particle image velocimetry, Powder Technol. 268(2014) 235-260.[6] K. Grudzien, Z. Chaniecki, A. Romanowski, M. Niedostatkiewicz, D. Sankowski, ETC image analysis method for shear zone measurements during silo discharging process, Chin. J. Chem. Eng. 20(2) (2012) 337-345.[7] A.W. Roberts, S.J. Wiche, Prediction of lining wear life of bins and chutes in bulk solids handling operations, Tribol. Int. 26(5) (1992) 345-351.[8] M.S.A. Bradley, A.N. Pittman, M. Bingley, R.J. Farnish, J. Pickering, Effect of wall material hardness on choice of wall materials for design of hoppers and silos for the discharge of hard bulk solids, Tribol. Int. 33(12) (2000) 845-853.[9] P.K. Xu, X.Z. Duan, G. Qian, X.G. Zhou, Dependence of wall stress ratio on wall friction coefficient during the discharging of a 3D rectangular hopper, Powder Technol. 284(2015) 326-335.[10] H. Tao, W.Q. Zhong, B.S. Jin, Comparison of construction method for DEM simulation of ellipsoidal particles, Chin. J. Chem. Eng. 21(7) (2013) 800-807.[11] D. Höhner, S. Wirtz, V. Scherer, A study of the influence of particle shape on the mechanical interactions of granular media in a hopper using the discrete element method, Powder Technol. 278(2015) 286-305.[12] R. Kvapil, Theorie der Schuttgutbewegung, V. E. B, Verlag Technik, Berlin, 1959.[13] R.L. Brown, Minimum energy theorem for flow of dry granules through apertures, Nature 191(4787) (1961) 458-461.[14] R.L. Brown, J.C. Richards, Kinematics of the flow of dry powders and bulk solids, Rheol. Acta 4(3) (1965) 153-165.[15] R.L. Brown, J.C. Richards, Principles of powder mechanics; essays on the packing and flow of powders and bulk solids, International Series of Monographs in Chemical Engineering, First ed.Pergamon Press, Oxford, New York, 1970.[16] H. Nagashima, T. Ishikura, M. Ide, Flow characteristics of a small moving bed downcomer with an orifice under negative pressure gradient, Powder Technol. 192(1) (2009) 110-115.[17] G.R. Watson, J.M. Rotter, A finite element kinematic analysis of planar granular solids flow, Chem. Eng. Sci. 51(16) (1996) 3967-3978.[18] U. Tüzün, R.M. Nedderman, Kinematic model for the flow of granular-materials, Powder Technol. 22(2) (1979) 243-253.[19] P.A. Langston, U. Tüzün, D.M. Heyes, Continuous potential discrete particle simulations of stress and velocity fields in hoppers:transition from fluid to granular flow, Chem. Eng. Sci. 49(8) (1994) 1259-1275.[20] P.A. Langston, U. Tüzün, D.M. Heyes, Discrete element simulation of granular flow in 2D and 3D hoppers:dependence of discharge rate and wall stress on particle interactions, Chem. Eng. Sci. 50(6) (1995) 967-987.[21] P.A. Langston, U. Tüzün, D.M. Heyes, Discrete element simulation of internal stress and flow fields in funnel flow hoppers, Powder Technol. 85(2) (1995) 153-169.[22] P.A. Langston, M.S. Nikitidis, U. Tüzün, D.M. Heyes, Microstructural simulation and imaging of granular flows in two-and three-dimensional hoppers, Powder Technol. 94(1) (1997) 59-72.[23] S. Masson, J. Martinez, Effect of particle mechanical properties on silo flow and stresses from distinct element simulations, Powder Technol. 109(1-3) (2000) 164-178.[24] H.P. Zhu, A.B. Yu, The effects of wall and rolling resistance on the couple stress of granular materials in vertical flow, Physica A 325(3-4) (2003) 347-360.[25] H.P. Zhu, A.B. Yu, Micro-mechanic modeling and analysis of unsteady-state granular flow in a cylindrical hopper, J. Eng. Math. 52(2005) 307-320.[26] H.P. Zhu, A.B. Yu, Steady-state granular flow in a 3D cylindrical hopper with flat bottom:macroscopic analysis, Granul. Matter 7(2) (2005) 97-107.[27] L. Peng, J. Xu, Q.S. Zhu, H.Z. Li, W. Ge, F.G. Chen, X.X. Ren, GPU-based discrete element simulation on flow regions of flat bottomed cylindrical hopper, Powder Technol. 304(2016) 218-228.[28] J. Xu, H.B. Qi, X.J. Fang, L.Q. Lu, W. Ge, X.W. Wang, M. Xu, F.G. Chen, X.F. He, J.H. Li, Quasi-real-time simulation of rotation drum using discrete element method with parallel GPU computing, Particuology 9(4) (2011) 446-450.[29] H. Hertz, Über die Berührung fester elastischer Körper, J. Reine Angew. Math. 92(1881) 156-171.[30] R.D. Mindlin, H. Deresiewica, Elastic spheres in contact under varying oblique forces, J. Appl. Mech. 20(1953) 327-344.[31] Y.C. Zhou, B.H. Xu, A.B. Yu, P. Zulli, An experimental and numerical study of the angle of repose of coarse spheres, Powder Technol. 125(1) (2002) 45-54.[32] F.G. Chen, W. Ge, L. Guo, X.F. He, B. Li, J.H. Li, X.P. Li, X.W. Wang, X.L. Yuan, Multi-scale HPC system for multi-scale discrete simulation-development and application of a supercomputer with 1 Petaflops peak performance in single precision, Particuology 7(4) (2009) 332-335.[33] H. Li, M. Kwauk, Vertical pneumatic moving-bed transport I. Analysis of flow dynamics, Chem. Eng. Sci. 44(2) (1989) 249-259. |