[1] C.R. Soccol, L.P.S. Vandenberghe, C. Rodrigues, A. Pandey, New perspectives for citric acid production and application, Food Technol. Biotechnol. 44(2006) 141-149.
[2] H. Feleke, Small-Scale Citric Acid Production on Solid State Fermentation Using Aspergillus niger, Addis Ababa University, Ethiopia, 2010.
[3] N.A. Amenaghawon, F.A. Aisien, Modelling and simulation of citric acid production from corn starch hydrolysate using Aspergillus niger, Environ. Nat. Resour. Res. 2(2012) 73-85.
[4] L.-P. Ling, H.-F. Leow, M.R. Sarmidi, Citric acid concentration by electrodialysis:Ion and water transport modelling, J. Membr. Sci. 199(2002) 59-67.
[5] G.S. Luo, X.Y. Shan, X. Qi, Y.C. Lu, Two-phase electro-electrodialysis for recovery and concentration of citric acid, Sep. Purif. Technol. 38(2004) 265-271.
[6] S. Novalic, F. Jagschits, J. Okwor, K.D. Kulbe, Behaviour of citric acid during electrodialysis, J. Membr. Sci. 108(1995) 201-205.
[7] R. Nikbakht, M. Sadrzadeh, T. Mohammadi, Effect of operating parameters on concentration of citric acid using electrodialysis, J. Food Eng. 83(2007) 596-604.
[8] X. Tongwen, Y. Weihua, Citric acid production by electrodialysis with bipolar membranes, Chem. Eng. Process. Process Intensif. 41(2002) 519-524.
[9] X. Tongwen, Y. Weihua, Effect of cell configurations on the performance of citric acid production by a bipolar membrane electrodialysis, J. Membr. Sci. 203(2002) 145-153.
[10] M. Papagianni, Advances in citric acid fermentation by Aspergillus niger:Biochemical aspects, membrane transport and modeling, Biotechnol. Prog. 25(2007) 244-263.
[11] Y. Zhang, L. Pinoy, B. Meesschaert, B. Van der Bruggen, Separation of small organic ions from salts by ion-exchange membrane in Electrodialysis, AIChE 57(2011) 2070-2078.
[12] J.G.D. Tadimeti, A. Chandra, S. Chattopadhyay, Optimum concentrate stream concentration in CaCl2 removal from sugar solution using electrodialysis, Chem. Eng. Process Technol. 6(2015) 1-13.
[13] L. Madzingaidzo, H. Danner, R. Braun, Process development and optimisation of lactic acid purification using electrodialysis, J. Biotechnol. 96(2002) 223-239.
[14] Y. Wang, N. Zhang, C. Huang, T. Xu, Production of monoprotic, diprotic, and triprotic organic acids by using electrodialysis with bipolar membranes:Effect of cell configurations, J. Membr. Sci. 385-386(2011) 226-233.
[15] G.S. Luo, S. Pan, J.G. Liu, Use of the electrodialysis process to concentrate a formic acid solution, Desalination 150(2002) 227-234.
[16] J.S.J. Ferrer, S. Laborie, G. Durand, M. Rakib, Formic acid regeneration by electromembrane processes, J. Membr. Sci. 280(2006) 509-516.
[17] H.J. Lee, M.K. Hong, S.D. Han, S.H. Cho, S.H. Moon, Fouling of an anion exchange membrane in the electrodialysis desalination process in the presence of organic foulants, Desalination 238(2009) 60-69.
[18] V. Silva, E. Poiesz, P. van der Heijden, Industrial wastewater desalination using electrodialysis:Evaluation and plant design, J. Appl. Electrochem. 43(2013) 1057-1067.
[19] J.-H. Choi, S.-H. Kim, S.-H. Moon, Heterogeneity of ion-exchange membranes:The effects of membrane heterogeneity on transport properties, J. Colloid Interface Sci. 241(2001) 120-126.
[20] X.T. Le, P. Viel, D.P. Tran, F. Grisotto, S. Palacin, Surface homogeneity of anion exchange membranes:A chronopotentiometric study in the overlimiting current range, J. Phys. Chem. B 113(2009) 5829-5836.
[21] P. Ray, V.K. Shahi, T.V. Pathak, G. Ramachandraiah, Transport phenomenon as a function of counter and co-ions in solution:Chronopotentiometric behavior of anion exchange membrane in different aqueous electrolyte solutions, J. Membr. Sci. 160(1999) 243-254.
[22] M. Hossain, L. Wu, Y. Li, L. Ge, T. Xu, Preparation of porous poly (vinylidene fluoride) membranes with acrylate particles for electrodialysis application, Sep. Purif. Technol. 150(2015) 102-111.
[23] H.J. Butt, B. Cappella, M. Kappl, Force measurements with the atomic force microscope:Technique, interpretation and applications, Surf. Sci. Rep. 59(2005) 1-152.
[24] ScanAsyst:Expert AFM Made Easy, (n.d.). https://www.bruker.com/fileadmin/user_upload/8-PDF-Docs/SurfaceAnalysis/AFM/Brochures/ScanAsyst-atomic-forcemicroscopy-imaging-mode-brochure-B071-B0.pdf.
[25] E. Vera, J. Sandeaux, F. Persin, G. Pourcelly, M. Dornier, J. Ruales, Modeling of clarified tropical fruit juice deacidification by electrodialysis, J. Membr. Sci. 326(2009) 472-483.
[26] J. Balster, M.H. Yildirim, D.F. Stamatialis, R. Ibanez, R.G.H. Lammertink, V. Jordan, M. Wessling, Morphology and microtopology of cation-exchange polymers and the origin of the overlimiting current, J. Phys. Chem. B 111(2007) 2152-2165.
[27] T.V. Eliseeva, E.V. Krisilova, V.P. Vasilevsky, E.G. Novitsky, Electrodialysis of solutions of tartaric acid and its salts, Pet. Chem. 52(2013) 609-613.
[28] V.A. Shaposhnik, T.V. Eliseeva, Barrier effect during the electrodialysis of ampholytes, J. Membr. Sci. 161(1999) 223-228.
[29] K. Praneeth, D. Manjunath, S.K. Bhargava, J. Tardio, S. Sridhar, Economical treatment of reverse osmosis reject of textile industry ef fl uent by electrodialysis-Evaporation integrated process, Desalination 333(2014) 82-91.
[30] G.Q. Chen, F.I.I. Eschbach, M. Weeks, S.L. Gras, S.E. Kentish, Removal of lactic acid from acid whey using electrodialysis, Sep. Purif. Technol. 158(2016) 230-237.
[31] D.A. Rockstraw, J.F. Scamehorn, Use of electrodialysis to remove acid, salt, and heavy metal mixtures from aqueous solutions, Sep. Sci. Technol. 32(1997) 1861-1883.
[32] T.A. Müller, R.H. Stokes, The mobility of the undissociated citric acid, Trans. Faraday Soc. 53(1957) 642-645.
[33] M. Kang, S. Cho, S. Kim, Y. Choi, S. Moon, Electrodialytic separation characteristics of large molecular organic acid in highly water-swollen cation-exchange membranes, J. Membr. Sci. 222(2003) 149-161.
[34] H. Butt, Measuring electrostatic, vander waals, and hydration forces in electrolyte solutions with an atomic force microscope, Biophys, J. Biophys. Soc. 60(1991) 1438-1444.
[35] J.G.D. Tadimeti, S. Chattopadhyay, Physico-chemical local equilibrium influencing cation transport in electrodialysis of multi-ionic solutions, Desalination 385(2016) 93-105.
[36] A. Chapotot, G. Pourcelly, C. Gavach, Transport competition between monovalent and divalent cations through cation-exchange membranes. Exchange isotherms and kinetic concepts, J. Membr. Sci. 96(1994) 167-181.
[37] K. Prochaska, M.J. Wozniak-Budych, Recovery of fumaric acid from fermentation broth using bipolar electrodialysis, J. Membr. Sci. 469(2014) 428-435.
[38] S. Thijssen, Citrate anticoagulation in hemodialysis, in:C. Angelo (Ed.), Prog. Hemodial.-From Emergent Biotechnol. To Clin. Pract., InTech 2011, pp. 217-226(http://www.intechopen.com/books/progress-in-hemodialysis-from-emergentbiotechnology-to-clinical-practice). |